Modified MFIX code to simulate hydrodynamics of gas-solids bubbling fluidized beds: A model of coupled kinetic theory of granular flow and discrete element method

被引:7
作者
Zhang, Qinghong [1 ]
Cai, Wenjian [1 ]
Lu, Cailei [1 ]
Gidaspow, Dimitri [2 ]
Lu, Huilin [1 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
[2] IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA
基金
中国国家自然科学基金;
关键词
Coupled Euler-Euler-Lagrangian model; Coefficient of restitution; Kinetic theory; Discrete element method; Fluidized bed; PARTICLE SIMULATION; NUMERICAL-SIMULATION; IMPACT VELOCITY; COEFFICIENT; RESTITUTION; SEGREGATION; TEMPERATURE; ROTATION; SIZE;
D O I
10.1016/j.powtec.2019.08.056
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The coefficient of restitution (CoR) of monodisperse particles used in the kinetic theory of granular flow (KTGF) is predicted using a coupled Euler solid phase-Euler gas phase-Lagrangian discrete particles (CEEL) approach in a bubbling fluidized bed (BFB). In the CEEL model, the CoR is obtained from dynamic information of Lagrangian discrete particles by means of discrete element method (DEM), and used to predict Euler solid phase properties in KTGF. The flow behavior of Euler solid phase, Euler gas phase and Lagrangian discrete particles is predicted in a gas and monodisperse particles BFB. The distributions of velocities and volume fractions using CEEL model are compared to numerical simulations using Euler-Euler two-fluid model (TFM) and Euler gas phase-Lagrangian discrete element method (CFD-DEM) in a BFB. The predicted distributions of granular temperature of Euler solid phase using KTGF are compared to Lagrangian discrete particles granular temperatures by means of DEM. The predicted distributions of velocities of Euler solid phase and volume fractions of Euler gas phase using CEEL model agree with experimental results. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:417 / 427
页数:11
相关论文
共 40 条
[1]  
ANSYS Fluent Inc, 2012, FLUENT 62 US GUID
[2]  
Brilliantov NV, 2001, LECT NOTES PHYS, V564, P100
[3]  
Crowe C. T., 1997, Multiphase flows with droplets and particles
[4]   DISCRETE NUMERICAL-MODEL FOR GRANULAR ASSEMBLIES [J].
CUNDALL, PA ;
STRACK, ODL .
GEOTECHNIQUE, 1979, 29 (01) :47-65
[5]   Collision of a 1-D column of beads with a wall [J].
Falcon, E ;
Laroche, C ;
Fauve, S ;
Coste, C .
EUROPEAN PHYSICAL JOURNAL B, 1998, 5 (01) :111-131
[6]  
Fan L-S, 1998, PRINCIPLES GAS SOLID
[7]   Assessment of model formulations in the discrete particle simulation of gas-solid flow [J].
Feng, YQ ;
Yu, AB .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (26) :8378-8390
[8]  
Garg R., Documentation of open-source MFIX-DEM software for gas-solids flows
[9]   New versions of iterative splitting methods for the momentum equation [J].
Geiser, Juergen ;
Hueso, Jose L. ;
Martinez, Eulalia .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 309 :359-370
[10]   Hydrodynamics of fluidization using kinetic theory: an emerging paradigm 2002 Flour-Daniel lecture [J].
Gidaspow, D ;
Jung, JW ;
Singh, RK .
POWDER TECHNOLOGY, 2004, 148 (2-3) :123-141