Clinical Pharmacology Considerations for the Development of Immune Checkpoint Inhibitors

被引:103
作者
Sheng, Jennifer [1 ]
Srivastava, Shivani [1 ]
Sanghavi, Kinjal [1 ]
Lu, Zheng [2 ]
Schmidt, Brian J. [1 ]
Bello, Akintunde [1 ]
Gupta, Manish [1 ,3 ]
机构
[1] Bristol Myers Squibb Co, 3551 Lawrenceville Rd, Princeton, NJ 08540 USA
[2] Astellas, Northbrook, IL USA
[3] Amer Coll Clin Pharmacol, Ashburn, VA USA
关键词
immunopharmacology; oncology; clinical pharmacology; clinical trials; pharmacology; immunotherapy; checkpoint inhibitors; QUANTITATIVE SYSTEMS PHARMACOLOGY; EXPOSURE-RESPONSE RELATIONSHIPS; ANTI-PD-1; MONOCLONAL-ANTIBODY; OPEN-LABEL; THERAPEUTIC PROTEINS; COMBINED NIVOLUMAB; DRUG DEVELOPMENT; DOUBLE-BLIND; SINGLE-ARM; PHASE-I;
D O I
10.1002/jcph.990
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Immuno-oncology works through activation of the patient's immune system against cancer, with several advantages over other treatment approaches, including cytotoxic agents and molecular-targeted therapies. The most notable feature of immuno-oncology treatments is the nature of the patient responses achieved, which can be more durable and sustained than with other modalities. Increased understanding of immune system complexity has provided a number of opportunities to advance several strategies for the development of immuno-oncology therapies. This review outlines the clinical pharmacology characteristics and development challenges for the 6 approved immunomodulatory monoclonal antibodies that target 2 immune checkpoint pathways: ipilimumab (an anti-cytotoxic T-lymphocyte antigen-4 antibody) and, more recently, nivolumab and pembrolizumab (both anti-programmed death-1 antibodies) and atezolizumab, avelumab, and durvalumab (all anti-programmed death ligand-1 antibodies). These agents have revealed much about the clinical pharmacology features of immune checkpoint inhibitors as a class, as well as the pharmacometric approaches used to support their clinical development and regulatory approval. The development experiences with these pioneering immuno-oncology agents are likely to serve as useful guides in the discovery, progression, and approval of future drugs or combination of drugs in this class. This review includes summaries of the pharmacokinetics and exposure-response of the immune checkpoint inhibitors approved to date, as well as an overview of some quantitative systems pharmacology approaches. The ability of immuno-oncology to meet its full potential will depend on overcoming development challenges, including the need for clear strategies to determine optimal dose and scheduling for monotherapy as well as combination approaches.
引用
收藏
页码:S26 / S42
页数:17
相关论文
共 111 条
  • [1] Big opportunities for small molecules in immuno-oncology
    Adams, Jerry L.
    Smothers, James
    Srinivasan, Roopa
    Hoos, Axel
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2015, 14 (09) : 603 - 622
  • [2] Nivolumab dose selection: challenges, opportunities, and lessons learned for cancer immunotherapy
    Agrawal, Shruti
    Feng, Yan
    Roy, Amit
    Kollia, Georgia
    Lestini, Brian
    [J]. JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2016, 4
  • [3] Evaluation of the potential for QTc prolongation in patients with solid tumors receiving nivolumab
    Agrawal, Shruti
    Waxman, Ian
    Lambert, Alexandre
    Roy, Amit
    Darbenzio, Raymond
    [J]. CANCER CHEMOTHERAPY AND PHARMACOLOGY, 2016, 77 (03) : 635 - 641
  • [4] Ahamadi M, 2017, CPT-PHARMACOMET SYST, V6, P49, DOI 10.1002/psp4.12139
  • [5] Efficient Generation and Selection of Virtual Populations in Quantitative Systems Pharmacology Models
    Allen, R. J.
    Rieger, T. R.
    Musante, C. J.
    [J]. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2016, 5 (03): : 140 - 146
  • [6] [Anonymous], 2015, YERVOY IP
  • [7] [Anonymous], 2014, ANN ONCOL
  • [8] [Anonymous], 2017, KEYTRUDA PEMBR
  • [9] [Anonymous], 2011, NIH QSP WORKSH GROUP
  • [10] [Anonymous], 2017, BAVENCIO AV