Flexible and Highly Photosensitive Electrolyte-Gated Organic Transistors with lonogel/Silver Nanowire Membranes

被引:28
作者
Xu, Haihua [1 ,2 ,3 ]
Zhu, QingQing [1 ,2 ,3 ]
Lv, Ying [1 ,2 ,3 ]
Deng, Kan [1 ,2 ,3 ]
Deng, Yinghua [1 ,2 ,3 ]
Li, Qiaoliang [1 ,2 ,3 ]
Qi, Suwen [1 ,2 ,3 ]
Chen, Wenwen [1 ,2 ,3 ]
Zhang, Huisheng [1 ,2 ,3 ]
机构
[1] Shenzhen Univ, Sch Med, Dept Biomed & Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Guangdong Key Lab Biomed Measurements & Ultrasoun, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Natl Reg Key Technol Engn Lab Med Ultrasound, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
transparent conductors; ionogels; phototransistors; silver nanowires; organic bulk heterojunction; flexible electronics; FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; SILVER NANOWIRES; HIGH-PERFORMANCE; IONIC LIQUIDS; TRANSPARENT; GRAPHENE; DIELECTRICS; PHOTOTRANSISTORS; FABRICATION;
D O I
10.1021/acsami.7b04470
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Flexible and low-voltage photosensors with high near-infrared (NIR) sensitivity are critical for realization of interacting humans with robots and environments by thermal imaging or night vision techniques. In this work, we for the first time develop an easy and cost-effective process to fabricate flexible and ultrathin electrolyte-gated organic phototransistors (EGOPTs) with high transparent nanocomposite membranes of high-conductivity silver nanowire (AgNW) networks and large-capacitance iontronic films. A high responsivity of 1.5 X 10(3) A.W1-, high sensitivity of 7.5 X 10(5), and 3 dB bandwidth of similar to 100 Hz can be achieved at very low operational voltages. Experimental studies in temporal photoresponse characteristics reveal the device has a shorter photoresponse time at lower light intensity since strong interactions between photoexcited hole carriers and anions induce extra long-lived trap states. The devices, benefiting from fast and air-stable operations, provide the possibility of the organic photosensors for constructing cost-effective and smart optoelectronic systems in the future.
引用
收藏
页码:18134 / 18141
页数:8
相关论文
共 51 条
[1]   Solution-processed transparent conducting electrodes with graphene, silver nanowires and PEDOT:PSS as alternative to ITO [J].
Altin, Yasin ;
Tas, Mahmut ;
Borazan, Ismail ;
Demir, Ali ;
Bedeloglu, Ayse .
SURFACE & COATINGS TECHNOLOGY, 2016, 302 :75-81
[2]   Organic Light Detectors: Photodiodes and Phototransistors [J].
Baeg, Kang-Jun ;
Binda, Maddalena ;
Natali, Dario ;
Caironi, Mario ;
Noh, Yong-Young .
ADVANCED MATERIALS, 2013, 25 (31) :4267-4295
[3]   In Situ Fabrication of Highly Conductive Metal Nanowire Networks with High Transmittance from Deep-Ultraviolet to Near-Infrared [J].
Bao, Chunxiong ;
Yang, Jie ;
Gao, Hao ;
Li, Faming ;
Yao, Yingfang ;
Yang, Bo ;
Fu, Gao ;
Zhou, Xiaoxin ;
Yu, Tao ;
Qin, Yiqiang ;
Liu, Jianguo ;
Zou, Zhigang .
ACS NANO, 2015, 9 (03) :2502-2509
[4]  
Benfenati V, 2013, NAT MATER, V12, P672, DOI [10.1038/NMAT3630, 10.1038/nmat3630]
[5]   Organic bioelectronics [J].
Berggren, Magnus ;
Richter-Dahlfors, Agneta .
ADVANCED MATERIALS, 2007, 19 (20) :3201-3213
[6]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[7]   Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic [J].
Cho, Jeong Ho ;
Lee, Jiyoul ;
Xia, Yu ;
Kim, Bongsoo ;
He, Yiyong ;
Renn, Michael J. ;
Lodge, Timothy P. ;
Frisbie, C. Daniel .
NATURE MATERIALS, 2008, 7 (11) :900-906
[8]   Water-gated organic field effect transistors - opportunities for biochemical sensing and extracellular signal transduction [J].
Cramer, T. ;
Campana, A. ;
Leonardi, F. ;
Casalini, S. ;
Kyndiah, A. ;
Murgia, M. ;
Biscarini, F. .
JOURNAL OF MATERIALS CHEMISTRY B, 2013, 1 (31) :3728-3741
[9]   Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage [J].
El-Kady, Maher F. ;
Kaner, Richard B. .
NATURE COMMUNICATIONS, 2013, 4
[10]   Microsecond Response in Organic Electrochemical Transistors: Exceeding the Ionic Speed Limit [J].
Friedlein, Jacob T. ;
Donahue, Mary J. ;
Shaheen, Sean E. ;
Malliaras, George G. ;
McLeod, Robert R. .
ADVANCED MATERIALS, 2016, 28 (38) :8398-8404