Analytical solution of strongly nonlinear Duffing oscillators

被引:25
|
作者
El-Naggar, A. M. [1 ]
Ismail, G. M. [2 ]
机构
[1] Benha Univ, Fac Sci, Dept Math, Banha, Egypt
[2] Sohag Univ, Fac Sci, Dept Math, Sohag 82524, Egypt
关键词
Analytical solution; Perturbation technique; Strongly nonlinear Duffing oscillators; MODIFIED STRAIGHTFORWARD EXPANSION; PERTURBATION TECHNIQUE; PARAMETER; SYSTEMS;
D O I
10.1016/j.aej.2015.07.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter alpha = alpha(epsilon) is defined such that the value of alpha is always small regardless of the magnitude of the original parameter epsilon. Therefore, the strongly nonlinear Duffing oscillators with large parameter e are transformed into a small parameter system with respect to alpha. Approximate solution obtained by the present method is compared with the solution of energy balance method, homotopy perturbation method, global error minimization method and lastly numerical solution. We observe from the results that this method is very simple, easy to apply, and gives a very good accuracy not only for small parameter epsilon but also for large values of epsilon. (C) 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V.
引用
收藏
页码:1581 / 1585
页数:5
相关论文
共 50 条
  • [21] A NONLINEAR SCALES METHOD FOR STRONGLY NONLINEAR OSCILLATORS
    XU, Z
    CHEUNG, YK
    NONLINEAR DYNAMICS, 1995, 7 (03) : 285 - 299
  • [22] Construction of Approximate Analytical Solutions to Strongly Nonlinear Coupled van der Pol Oscillators
    Qian, Y. H.
    Liu, W. K.
    Chen, S. M.
    ADVANCES IN MECHANICAL ENGINEERING, 2014,
  • [23] Strongly Nonlinear Oscillators Subject to Delay
    Erneux, Thomas
    JOURNAL OF VIBRATION AND CONTROL, 2010, 16 (7-8) : 1141 - 1149
  • [24] A STOCHASTIC-MODEL FOR NONLINEAR OSCILLATORS OF DUFFING TYPE
    SPIGLER, R
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1985, 45 (06) : 990 - 1005
  • [25] ANALYTICAL SOLUTION OF TWO COUPLED OSCILLATORS WITH A NONLINEAR COUPLING RESORTING FORCE
    AL-Shudeifat, Mohammad A.
    Burton, Thomas D.
    ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 4B, 2015,
  • [27] Analytical and Numerical Study on Forced and Damped Complex Duffing Oscillators
    Alhejaili, Weaam
    Salas, Alvaro H.
    El-Tantawy, Samir A.
    MATHEMATICS, 2022, 10 (23)
  • [28] LOCAL BIFURCATION ANALYSIS OF STRONGLY NONLINEAR DUFFING SYSTEM
    毕勤胜
    陈予恕
    吴志强
    AppliedMathematicsandMechanics(EnglishEdition), 1996, (09) : 837 - 845
  • [29] Solution of nonlinear cubic-quintic Duffing oscillators using He’s Energy Balance Method
    D. D. Ganji
    M. Gorji
    S. Soleimani
    M. Esmaeilpour
    Journal of Zhejiang University-SCIENCE A, 2009, 10 : 1263 - 1268
  • [30] Solution of nonlinear cubic-quintic Duffing oscillators using He's Energy Balance Method
    Ganji, D. D.
    Gorji, M.
    Soleimani, S.
    Esmaeilpour, M.
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2009, 10 (09): : 1263 - 1268