Analytical solution of strongly nonlinear Duffing oscillators

被引:25
|
作者
El-Naggar, A. M. [1 ]
Ismail, G. M. [2 ]
机构
[1] Benha Univ, Fac Sci, Dept Math, Banha, Egypt
[2] Sohag Univ, Fac Sci, Dept Math, Sohag 82524, Egypt
关键词
Analytical solution; Perturbation technique; Strongly nonlinear Duffing oscillators; MODIFIED STRAIGHTFORWARD EXPANSION; PERTURBATION TECHNIQUE; PARAMETER; SYSTEMS;
D O I
10.1016/j.aej.2015.07.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter alpha = alpha(epsilon) is defined such that the value of alpha is always small regardless of the magnitude of the original parameter epsilon. Therefore, the strongly nonlinear Duffing oscillators with large parameter e are transformed into a small parameter system with respect to alpha. Approximate solution obtained by the present method is compared with the solution of energy balance method, homotopy perturbation method, global error minimization method and lastly numerical solution. We observe from the results that this method is very simple, easy to apply, and gives a very good accuracy not only for small parameter epsilon but also for large values of epsilon. (C) 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V.
引用
收藏
页码:1581 / 1585
页数:5
相关论文
共 50 条
  • [21] Analytical approaches to oscillators with nonlinear springs in parallel and series connections
    Sanmiguel-Rojas, E.
    Hidalgo-Martinez, M.
    Jimenez-Gonzalez, J. I.
    Martin-Alcantara, A.
    MECHANISM AND MACHINE THEORY, 2015, 93 : 39 - 52
  • [22] On the nonlocal symmetries of certain nonlinear oscillators and their general solution
    Bruzon, M. S.
    Gandarias, M. L.
    Senthilvelan, M.
    PHYSICS LETTERS A, 2011, 375 (33) : 2985 - 2987
  • [23] Study of strongly nonlinear oscillators using the Aboodh transform and the homotopy perturbation method
    Manimegalai, K.
    Zephania, Sagar C. F.
    Bera, P. K.
    Bera, P.
    Das, S. K.
    Sil, Tapas
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (09)
  • [24] Global study of Rayleigh-Duffing oscillators
    Chen, Hebai
    Zou, Lan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (16)
  • [25] Analytical technique for solving strongly nonlinear oscillator differential equations
    Ismail, G. M.
    El-Moshneb, M. M.
    Zayed, M.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 74 : 547 - 557
  • [26] Nonlinear oscillators with rational terms: A new semi-analytical technique
    Khan, Y.
    Fardi, M.
    Boroujeni, F. Hemati
    SCIENTIA IRANICA, 2013, 20 (04) : 1153 - 1160
  • [27] Entropy for Strongly Coupled Oscillators
    Tufano, Dante A.
    Sotoudeh, Zahra
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2018, 140 (01):
  • [28] The iterative homotopy harmonic balance method for conservative Helmholtz-Duffing oscillators
    Guo, Zhongjin
    Leung, A. Y. T.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (09) : 3163 - 3169
  • [29] ANALYTICAL SOLUTION OF NONLINEAR BAROTROPIC VORTICITY EQUATION
    WANG Yue-peng College of Mathematics and Physics
    JournalofHydrodynamics, 2008, (04) : 530 - 535
  • [30] Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by the hyperbolic perturbation method
    Chen, Y. Y.
    Chen, S. H.
    NONLINEAR DYNAMICS, 2009, 58 (1-2) : 417 - 429