ON A CLASS OF ELLIPTIC SYSTEM OF SCHRODINGER-POISSON TYPE

被引:0
作者
Ferreira, Lucas C. F. [1 ]
Medeiros, Everaldo S. [2 ]
Montenegro, Marcelo [1 ]
机构
[1] Univ Estadual Campinas, IMECC Dept Matemat, BR-13083859 Campinas, SP, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
基金
巴西圣保罗研究基金会;
关键词
Schrodinger equations; existence; symmetry; positivity; Bessel potential; KLEIN-GORDON-MAXWELL; MULTIPLE SOLITARY WAVES; GROUND-STATE SOLUTIONS; THOMAS-FERMI; EQUATIONS; MOLECULES; ATOMS; NONEXISTENCE; EXISTENCE; HARTREE;
D O I
10.1017/S1446788714000408
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove existence and qualitative properties of solutions for a nonlinear elliptic system arising from the coupling of the nonlinear Schrodinger equation with the Poisson equation. We use a contraction map approach together with estimates of the Bessel potential used to rewrite the system in an integral form.
引用
收藏
页码:301 / 314
页数:14
相关论文
共 50 条
  • [21] Existence and nonexistence of nontrivial solutions for the Schrodinger-Poisson system with zero mass potential
    Wang, Xiaoping
    Chen, Fulai
    Liao, Fangfang
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [22] On the existence of solutions for nonhomogeneous Schrodinger-Poisson system
    Wang, Lixia
    Ma, Shiwang
    Wang, Xiaoming
    BOUNDARY VALUE PROBLEMS, 2016,
  • [23] Positive solutions for a Schrodinger-Poisson system with singularity and critical exponent
    Lei, Chun-Yu
    Liu, Gao-Sheng
    Suo, Hong-Min
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (02)
  • [24] Positive solutions for some non-autonomous Schrodinger-Poisson systems
    Cerami, Giovanna
    Vaira, Giusi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) : 521 - 543
  • [25] Infinitely many geometrically distinct solutions for periodic Schrodinger-Poisson systems
    Chen, Jing
    Zhang, Ning
    BOUNDARY VALUE PROBLEMS, 2019,
  • [26] Saddle solutions for the planar Schrodinger-Poisson system with exponential growth
    Shan, Liying
    Shuai, Wei
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (05):
  • [27] Normalized solutions for Schrodinger-Poisson equations with general nonlinearities
    Chen, Sitong
    Tang, Xianhua
    Yuan, Shuai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 481 (01)
  • [28] Existence of solutions to a class of Schrodinger-Poisson systems with indefinite nonlinearity
    Li, Fuyi
    Chang, Caihong
    Feng, Xiaojing
    APPLICABLE ANALYSIS, 2017, 96 (05) : 721 - 740
  • [29] Localized nodal solutions of higher topological type for nonlinear Schrodinger-Poisson system
    Chen, Zhi
    Qin, Dongdong
    Zhang, Wen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
  • [30] Least energy solutions for a class of fractional Schrodinger-Poisson systems
    Shen, Liejun
    Yao, Xiaohua
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)