ON A CLASS OF ELLIPTIC SYSTEM OF SCHRODINGER-POISSON TYPE

被引:0
|
作者
Ferreira, Lucas C. F. [1 ]
Medeiros, Everaldo S. [2 ]
Montenegro, Marcelo [1 ]
机构
[1] Univ Estadual Campinas, IMECC Dept Matemat, BR-13083859 Campinas, SP, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
基金
巴西圣保罗研究基金会;
关键词
Schrodinger equations; existence; symmetry; positivity; Bessel potential; KLEIN-GORDON-MAXWELL; MULTIPLE SOLITARY WAVES; GROUND-STATE SOLUTIONS; THOMAS-FERMI; EQUATIONS; MOLECULES; ATOMS; NONEXISTENCE; EXISTENCE; HARTREE;
D O I
10.1017/S1446788714000408
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove existence and qualitative properties of solutions for a nonlinear elliptic system arising from the coupling of the nonlinear Schrodinger equation with the Poisson equation. We use a contraction map approach together with estimates of the Bessel potential used to rewrite the system in an integral form.
引用
收藏
页码:301 / 314
页数:14
相关论文
共 50 条
  • [1] The quasilinear Schrodinger-Poisson system
    Du, Yao
    Su, Jiabao
    Wang, Cong
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (07)
  • [2] On a quasilinear Schrodinger-Poisson system
    Du, Yao
    Su, Jiabao
    Wang, Cong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (01)
  • [3] The Schrodinger-Poisson system with p-Laplacian
    Du, Yao
    Su, Jiabao
    Wang, Cong
    APPLIED MATHEMATICS LETTERS, 2021, 120
  • [4] Positive solutions for a nonhomogeneous Schrodinger-Poisson system
    Zhang, Jing
    Niu, Rui
    Han, Xiumei
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1201 - 1222
  • [5] MULTIPLE SOLUTIONS FOR A NONHOMOGENEOUS SCHRODINGER-POISSON SYSTEM WITH CONCAVE AND CONVEX NONLINEARITIES
    Wang, Lixia
    Ma, Shiwang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (02): : 628 - 637
  • [6] Axially symmetric solutions for the planar Schrodinger-Poisson system with critical exponential growth
    Chen, Sitong
    Tang, Xianhua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9144 - 9174
  • [7] POSITIVE SOLUTIONS FOR A NONLINEAR SCHRODINGER-POISSON SYSTEM
    Wang, Chunhua
    Yang, Jing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (11) : 5461 - 5504
  • [8] Multi-bump solutions for the nonlinear Schrodinger-Poisson system
    Li, Gongbao
    Peng, Shuangjie
    Wang, Chunhua
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [9] Multiple Solutions for a Class of Fractional Schrodinger-Poisson System
    Chen, Lizhen
    Li, Anran
    Wei, Chongqing
    JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [10] Multiple solutions for superlinear Schrodinger-Poisson system with sign-changing potential and nonlinearity
    Liu, Hongliang
    Chen, Haibo
    Yang, Xiaoxia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) : 1982 - 1990