FULLY AUTOMATIC 3-D SEGMENTATION OF KNEE BONE COMPARTMENTS BY ITERATIVE LOCAL BRANCH-AND-MINCUT ON MR IMAGES FROM OSTEOARTHRITIS INITIATIVE (OAI)

被引:0
作者
Park, Sang Hyun [1 ]
Lee, Soochahn [1 ]
Shim, Hackjoon [1 ]
Yun, Il Dong [2 ]
Lee, Sang Uk [1 ]
Lee, Kyoung Ho [3 ]
Kang, Heung Sik [3 ]
Han, Joon Koo [3 ]
机构
[1] Seoul Natl Univ, Sch EECS, Seoul 151, South Korea
[2] Hankuk Univ FS, Sch EIE, Seoul, South Korea
[3] Natl Univ Bundang Hosp, Dept Radiol, Seoul, South Korea
来源
2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6 | 2009年
基金
新加坡国家研究基金会;
关键词
Segmentation; Branch-and-mincut; Knee Bone; MR Image; Osteoarthritis;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a fully automatic method to segment bone compartments in magnetic resonance (MR) images of knee joints gathered from a public database for research on knee osteoarthritis (OA), the osteoarthritis initiative (OAI). Considering the fixed scanning parameters which include position and flexion of the knee joint, the proposed method efficiently utilizes both shape and intensity priors obtained from pre-segmented data, and iteratively applies branch-and-mincut [1] to a local subset of configurations of shape templates. More specifically, at each iteration, the optimal among a subset of the whole range in translation, rotation, and scale parameters are decomposed and separately computed, and motion is greedily selected by the lowest energy. Experimental results demonstrate the increased accuracy and efficiency compared to when only shape priors are applied and when branch-and-mincut is applied to the whole range of parameters at once, respectively.
引用
收藏
页码:3381 / +
页数:2
相关论文
共 10 条
  • [1] [Anonymous], PAMI
  • [2] Boykov Y., 2006, IJCV, V70
  • [3] CIBERE J, 2004, ARTHRITIS RHEUMATISM, V50
  • [4] Freedman Daniel., 2005, CVPR
  • [5] Kumar M.P., 2005, CVPR
  • [6] Lempitsky Victor., 2008, ECCV
  • [7] QUANTIFICATION OF ARTICULAR-CARTILAGE IN THE KNEE WITH PULSED SATURATION-TRANSFER SUBTRACTION AND FAT-SUPPRESSED MR-IMAGING - OPTIMIZATION AND VALIDATION
    PETERFY, CG
    VANDIJKE, CF
    JANZEN, DL
    GLUER, CC
    NAMBA, R
    MAJUMDAR, S
    LANG, P
    GENANT, HK
    [J]. RADIOLOGY, 1994, 192 (02) : 485 - 491
  • [8] GrabCut - Interactive foreground extraction using iterated graph cuts
    Rother, C
    Kolmogorov, V
    Blake, A
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2004, 23 (03): : 309 - 314
  • [9] SHIM H, 2009, P SPIE MED IMAGING
  • [10] Knee Cartilage: Efficient and Reproducible Segmentation on High-Spatial-Resolution MR Images with the Semiautomated Graph-Cut Algorithm Method
    Shim, Hackjoon
    Chang, Samuel
    Tao, Cheng
    Wang, Jin-Hong
    Kwoh, C. Kent
    Bae, Kyongtae T.
    [J]. RADIOLOGY, 2009, 251 (02) : 548 - 556