An analytic center cutting plane method for pseudomonotone variational inequalities

被引:23
作者
Goffin, JL
Marcotte, P
Zhu, DL
机构
[1] UNIV MONTREAL,CTR RECH TRANSPORTS,MONTREAL,PQ H3C 3J7,CANADA
[2] MCGILL UNIV,FAC MANAGEMENT,MONTREAL,PQ H3C 3J7,CANADA
[3] MCGILL UNIV,GERAD,MONTREAL,PQ H3C 3J7,CANADA
关键词
variational inequalities; interior point methods; cutting planes; generalized monotonicity;
D O I
10.1016/S0167-6377(96)00029-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider an analytic center algorithm for solving generalized monotone variational inequalities in R(n), which adapts a recent result due to Goffin et al. (1993) to the numerical resolution of continuous pseudomonotone variational inequalities.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 15 条
[1]  
Altman A., 1996, Computational Optimization and Applications, V5, P175, DOI 10.1007/BF00249055
[2]  
Auslender A., 1976, OPTIMISATION METHODE
[4]   DECOMPOSITION AND NONDIFFERENTIABLE OPTIMIZATION WITH THE PROJECTIVE ALGORITHM [J].
GOFFIN, JL ;
HAURIE, A ;
VIAL, JP .
MANAGEMENT SCIENCE, 1992, 38 (02) :284-302
[5]   Complexity analysis of an interior cutting plane method for convex-feasibility problems [J].
Goffin, JL ;
Luo, ZQ ;
Ye, YY .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (03) :638-652
[6]  
GOFFIN JL, 1993, LARGE SCALE OPTIMIZA
[7]  
KINDERLEHRER D, 1980, INTRO VARIATIONAL IN
[8]  
KONNOV IV, 1993, RUSSIAN MATH, V37, P46
[10]   A unifying geometric solution framework and complexity analysis for variational inequalities [J].
Magnanti, TL ;
Perakis, G .
MATHEMATICAL PROGRAMMING, 1995, 71 (03) :327-351