Picard bundle on the moduli space of torsionfree sheaves

被引:1
|
作者
Bhosle, Usha N. [1 ]
机构
[1] Tata Inst Fundamental Res, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2020年 / 130卷 / 01期
关键词
Nodal curve; moduli spaces; Picard bundles; stability; VECTOR-BUNDLES; STABILITY;
D O I
10.1007/s12044-020-00562-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Y be an integral nodal projective curve of arithmetic genus g >= 2 with m nodes defined over an algebraically closed field. Let n and d be mutually coprime integers with n >= 2 and d>n(2g-2). Fix a line bundle L of degree d on Y. We prove that the Picard bundle E-L over the 'fixed determinant moduli space' U-L(n,d) is stable with respect to the polarisation theta(L) and its restriction to the moduli space U-L '(n,d), of vector bundles of rank n and determinant L, is stable with respect to any polarisation. There is an embedding of the compactified Jacobian (J) over bar (Y) in the moduli space U-Y(n,d) of rank n and degree d. We show that the restriction of the Picard bundle of rank ng (over U-Y(n,n(2g-1))) to (J) over bar (Y) is stable with respect to any theta divisor theta((J) over bar (Y)).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Picard bundle on the moduli space of torsionfree sheaves
    Usha N Bhosle
    Proceedings - Mathematical Sciences, 2020, 130
  • [2] Picard Groups of Moduli Spaces of Torsionfree Sheaves on Curves
    Bhosle, Usha N.
    VECTOR BUNDLES AND COMPLEX GEOMETRY, 2010, 522 : 31 - 42
  • [3] A note on the Picard bundle over a moduli space of vector bundles
    Biswas, I
    Brambila-Paz, L
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (03) : 235 - 241
  • [4] BRAUER GROUP AND BIRATIONAL TYPE OF MODULI SPACES OF TORSIONFREE SHEAVES ON A NODAL CURVE
    Bhosle, Usha N.
    Biswas, Indranil
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (04) : 1769 - 1784
  • [5] Picard groups of the moduli spaces of semistable sheaves I
    Usha N. Bhosle
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2004, 114 : 107 - 122
  • [6] Picard groups of the moduli spaces of semistable sheaves I
    Bhosle, UN
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2004, 114 (02): : 107 - 122
  • [7] Moduli of torsionfree sheaves of rank two and odd degree on a nodal hyperelliptic curve
    Bhosle U.N.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (1): : 155 - 179
  • [8] Moduli of sheaves
    Mestrano, Nicole
    Simpson, Carlos
    DEVELOPMENT OF MODULI THEORY - KYOTO 2013, 2016, 69 : 77 - 172
  • [9] Lagrangian Subspaces of the Moduli Space of Simple Sheaves on K3 Surfaces
    Fantechi, Barbara
    Miro-Roig, Rosa M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2025, 22 (01)
  • [10] Torsionfree sheaves over a nodal curve of arithmetic genus one
    Bhosle, Usha N.
    Biswas, Indranil
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2008, 118 (01): : 81 - 98