Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation

被引:163
作者
Saatchi, Mahdi [1 ]
McClure, Mathew C. [2 ,3 ]
McKay, Stephanie D. [2 ]
Rolf, Megan M. [2 ]
Kim, JaeWoo [2 ]
Decker, Jared E. [2 ]
Taxis, Tasia M. [2 ]
Chapple, Richard H. [2 ]
Ramey, Holly R. [2 ]
Northcutt, Sally L. [4 ]
Bauck, Stewart [5 ]
Woodward, Brent [5 ]
Dekkers, Jack C. M. [1 ]
Fernando, Rohan L. [1 ]
Schnabel, Robert D. [2 ]
Garrick, Dorian J. [1 ,6 ]
Taylor, Jeremy F. [2 ]
机构
[1] Iowa State Univ, Dept Anim Sci, Ames, IA 50011 USA
[2] Univ Missouri, Div Anim Sci, Columbia, MO 65211 USA
[3] ARS, Bovine Funct Genom Lab, USDA, Beltsville, MD 20705 USA
[4] Amer Angus Assoc, St Joseph, MO 64506 USA
[5] Merial Ltd, Igen Livestock Business Unit, Duluth, MN USA
[6] Massey Univ, Inst Vet Anim & Biomed Sci, Palmerston North, New Zealand
关键词
LINKAGE DISEQUILIBRIUM; IMPACT; INFORMATION; PREDICTION; SELECTION; RELIABILITY; DENSITY; TRAITS; SET; SNP;
D O I
10.1186/1297-9686-43-40
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Background: Genomic selection is a recently developed technology that is beginning to revolutionize animal breeding. The objective of this study was to estimate marker effects to derive prediction equations for direct genomic values for 16 routinely recorded traits of American Angus beef cattle and quantify corresponding accuracies of prediction. Methods: Deregressed estimated breeding values were used as observations in a weighted analysis to derive direct genomic values for 3570 sires genotyped using the Illumina BovineSNP50 BeadChip. These bulls were clustered into five groups using K-means clustering on pedigree estimates of additive genetic relationships between animals, with the aim of increasing within-group and decreasing between-group relationships. All five combinations of four groups were used for model training, with cross-validation performed in the group not used in training. Bivariate animal models were used for each trait to estimate the genetic correlation between deregressed estimated breeding values and direct genomic values. Results: Accuracies of direct genomic values ranged from 0.22 to 0.69 for the studied traits, with an average of 0.44. Predictions were more accurate when animals within the validation group were more closely related to animals in the training set. When training and validation sets were formed by random allocation, the accuracies of direct genomic values ranged from 0.38 to 0.85, with an average of 0.65, reflecting the greater relationship between animals in training and validation. The accuracies of direct genomic values obtained from training on older animals and validating in younger animals were intermediate to the accuracies obtained from K-means clustering and random clustering for most traits. The genetic correlation between deregressed estimated breeding values and direct genomic values ranged from 0.15 to 0.80 for the traits studied. Conclusions: These results suggest that genomic estimates of genetic merit can be produced in beef cattle at a young age but the recurrent inclusion of genotyped sires in retraining analyses will be necessary to routinely produce for the industry the direct genomic values with the highest accuracy.
引用
收藏
页数:16
相关论文
共 40 条
[1]  
[Anonymous], 2011, R: A Language and Environment for Statistical Computing
[2]   Genome-wide association studies for feedlot and growth traits in cattle [J].
Bolormaa, S. ;
Hayes, B. J. ;
Savin, K. ;
Hawken, R. ;
Barendse, W. ;
Arthur, P. F. ;
Herd, R. M. ;
Goddard, M. E. .
JOURNAL OF ANIMAL SCIENCE, 2011, 89 (06) :1684-1697
[3]   Accuracy of breeding values when using and ignoring the polygenic effect in genomic breeding value estimation with a marker density of one SNP per cM [J].
Calus, M. P. L. ;
Veerkamp, R. F. .
JOURNAL OF ANIMAL BREEDING AND GENETICS, 2007, 124 (06) :362-368
[4]  
Cleveland MA, 2005, J ANIM SCI, V83, P992
[5]  
Cullis B R, ASREML USER GUIDE RE
[6]   Linkage disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus cattle [J].
de Roos, A. P. W. ;
Hayes, B. J. ;
Spelman, R. J. ;
Goddard, M. E. .
GENETICS, 2008, 179 (03) :1503-1512
[7]  
De Roos A PW., 2009, Interbull Bulletin, V39, P47
[8]  
Fernando RL, 2010, GENSEL USER MANUAL P
[9]   Producing and using genetic evaluations in the United States beef industry of today [J].
Garrick, D. J. ;
Golden, B. L. .
JOURNAL OF ANIMAL SCIENCE, 2009, 87 (14) :E11-E18
[10]   The nature, scope and impact of genomic prediction in beef cattle in the United States [J].
Garrick, Dorian J. .
GENETICS SELECTION EVOLUTION, 2011, 43