First-principles insight into the entanglements between superionic diffusion and Li/Al antisite in Al-doped Li1+xAlxGe2-x(PO4)3 (LAGP)

被引:11
作者
Jiang, ChangKun [1 ]
Lu, Xia [2 ]
Cao, DaPeng [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Sun Yat Sen Univ, Sch Mat, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Li1+xAlxGe2-x(PO4)(3) (LAGP); Li; Al antisite; superionic conductor; first-principles calculations; Li ion batteries; NEUTRON-DIFFRACTION; LITHIUM; MECHANISM;
D O I
10.1007/s11431-020-1562-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As an ion conductor, the Al-doped Li1+xAlxGe2-x(PO4)(3) (LAGP) demonstrates the superionic Li diffusion behavior, however, without the convinced verifications. In this context, the density functional theory (DFT) calculations are employed to clarify the structural origin of the fast Li ion migration kinetics in LAGP solid electrolytes. The calculated results show that doping of Al leads to an emerging high-energy 36f Li site, which plays an important role in promoting the Li diffusion and can largely lower the Li ion diffusion energy barrier. Moreover, the Li/Al antisite defect is investigated firstly, with which the Li ions are excited to occupy a relatively high energy site in LAGP. The obvious local structural distortion by Li/Al antisite results in the coordination change upon Li diffusion (lattice field distortion), which facilitates the Li diffusion significantly and is probably the main reason to account for the superionic diffusion phenomenon. Therefore, the occupation of Li at high-energy sites should be an effective method to establish the fast Li diffusion, which implies a rewarding avenue to build better Li-ion batteries.
引用
收藏
页码:1787 / 1794
页数:8
相关论文
共 48 条
[1]   Local structure and lithium mobility in intercalated Li3AlxTi2-x(PO4)3 NASICON type materials: a combined neutron diffraction and NMR study [J].
Arbi, K. ;
Hoelzel, M. ;
Kuhn, A. ;
Garcia-Alvarado, F. ;
Sanz, J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) :18397-18405
[2]   Defect formation and migration in Nasicon Li1+xAlxTi2-x(PO4)3 [J].
Arjmandi, Hamid R. ;
Grieshammer, Steffen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (43) :24232-24238
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3 [J].
Feng, J. K. ;
Lu, L. ;
Lai, M. O. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 501 (02) :255-258
[5]   Shark baselines and the conservation role of remote coral reef ecosystems [J].
Ferretti, Francesco ;
Curnick, David ;
Liu, Keli ;
Romanov, Evgeny V. ;
Block, Barbara A. .
SCIENCE ADVANCES, 2018, 4 (03)
[6]   Energetics of Ion Transport in NASICON-Type Electrolytes [J].
Francisco, Brian E. ;
Stoldt, Conrad R. ;
M'Peko, Jean-Claude .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (29) :16432-16442
[7]   K-Birnessite Electrode Obtained by Ion Exchange for Potassium-Ion Batteries: Insight into the Concerted Ionic Diffusion and K Storage Mechanism [J].
Gao, Ang ;
Li, Min ;
Guo, Nannan ;
Qiu, Doping ;
Li, Yan ;
Wang, Senhao ;
Lu, Xia ;
Wang, Feng ;
Yang, Ru .
ADVANCED ENERGY MATERIALS, 2019, 9 (01)
[8]   Improved electron/Li-ion transport and oxygen stability of Mo-doped Li2MnO3 [J].
Gao, Yurui ;
Ma, Jun ;
Wang, Xuefeng ;
Lu, Xia ;
Bai, Ying ;
Wang, Zhaoxiang ;
Chen, Liquan .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (13) :4811-4818
[9]   Stability of lithium ion conductor NASICON structure glass ceramic in acid and alkaline aqueous solution [J].
He, Kun ;
Zu, Chengkui ;
Wang, Yanhang ;
Han, Bin ;
Yin, Xianyin ;
Zhao, Huifeng ;
Liu, Yonghua ;
Chen, Jiang .
SOLID STATE IONICS, 2014, 254 :78-81
[10]   Origin of fast ion diffusion in super-ionic conductors [J].
He, Xingfeng ;
Zhu, Yizhou ;
Mo, Yifei .
NATURE COMMUNICATIONS, 2017, 8