A Posteriori Error Estimates for Finite Volume Approximations

被引:4
作者
Cochez-Dhondt, S. [1 ]
Nicaise, S. [1 ]
Repin, S. [2 ]
机构
[1] Univ Valenciennes & Hainaut Cambresis, CNRS, LAMAV, FR 2956,ISTV, F-59313 Valenciennes 9, France
[2] VA Steklov Math Inst, St Petersburg 191023, Russia
关键词
finite volume methods; elliptic problems; a posteriori error estimates of the functional type; ELEMENT APPROXIMATIONS;
D O I
10.1051/mmnp/20094105
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present new a posteriori error estimates for the finite volume approximations of elliptic problems. They are obtained by applying functional a posteriori error estimates to natural extensions of the approximate solution and its flux computed by the finite volume method. The estimates give guaranteed upper bounds for the errors in terms of the primal (energy) norm, dual norm (for fluxes), and also in terms of the combined primal-dual norms. It is shown that the estimates provide sharp upper and lower bounds of the error and their practical computation requires solving only finite-dimensional problems.
引用
收藏
页码:106 / 122
页数:17
相关论文
共 50 条
[41]   A POSTERIORI MODELING ERROR ESTIMATES FOR THE ASSUMPTION OF PERFECT INCOMPRESSIBILITY IN THE NAVIER-STOKES EQUATION [J].
Fischer, Julian .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (05) :2178-2205
[42]   A priori error estimates for upwind finite volume schemes for two-dimensional linear convection diffusion problems [J].
Kroener, Dietmar ;
Rokyta, Mirko .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (02) :473-488
[43]   A posteriori error estimate for discontinuous Galerkin finite element method on polytopal mesh [J].
Cui, Jintao ;
Cao, Fuzheng ;
Sun, Zhengjia ;
Zhu, Peng .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (03) :601-616
[44]   Local a posteriori estimates for pointwise gradient errors in finite element methods for elliptic problems [J].
Demlow, Alan .
MATHEMATICS OF COMPUTATION, 2006, 76 (257) :19-42
[46]   A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media [J].
Di Pietro, Daniele A. ;
Flauraud, Eric ;
Vohralik, Martin ;
Yousef, Soleiman .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 :163-187
[47]   Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems [J].
Ern, Alexandre ;
Stephansen, Annette F. ;
Vohralik, Martin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (01) :114-130
[48]   DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR INTERFACE PROBLEMS: A PRIORI AND A POSTERIORI ERROR ESTIMATIONS [J].
Cai, Zhiqiang ;
Ye, Xiu ;
Zhang, Shun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) :1761-1787
[49]   Oscillation in a posteriori error estimation [J].
Kreuzer, Christian ;
Veeser, Andreas .
NUMERISCHE MATHEMATIK, 2021, 148 (01) :43-78
[50]   Stability of finite volume approximations for the Laplacian operator on quadrilateral and triangular grids [J].
Svärd, M ;
Nordström, J .
APPLIED NUMERICAL MATHEMATICS, 2004, 51 (01) :101-125