A Posteriori Error Estimates for Finite Volume Approximations

被引:4
作者
Cochez-Dhondt, S. [1 ]
Nicaise, S. [1 ]
Repin, S. [2 ]
机构
[1] Univ Valenciennes & Hainaut Cambresis, CNRS, LAMAV, FR 2956,ISTV, F-59313 Valenciennes 9, France
[2] VA Steklov Math Inst, St Petersburg 191023, Russia
关键词
finite volume methods; elliptic problems; a posteriori error estimates of the functional type; ELEMENT APPROXIMATIONS;
D O I
10.1051/mmnp/20094105
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present new a posteriori error estimates for the finite volume approximations of elliptic problems. They are obtained by applying functional a posteriori error estimates to natural extensions of the approximate solution and its flux computed by the finite volume method. The estimates give guaranteed upper bounds for the errors in terms of the primal (energy) norm, dual norm (for fluxes), and also in terms of the combined primal-dual norms. It is shown that the estimates provide sharp upper and lower bounds of the error and their practical computation requires solving only finite-dimensional problems.
引用
收藏
页码:106 / 122
页数:17
相关论文
共 50 条
  • [21] A posteriori error estimates for discontinuous Galerkin method to the elasticity problem
    Thi Hong Cam Luong
    Daveau, Christian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (04) : 1348 - 1369
  • [22] ON A POSTERIORI ERROR ESTIMATES FOR SPACE TIME DISCONTINUOUS GALERKIN METHOD
    Dolejsi, Vit
    Roskovec, Filip
    Vlasak, Miloslav
    PROCEEDINGS OF THE CONFERENCE ALGORITMY 2016, 2016, : 125 - 134
  • [23] A Posteriori Error Analysis of Nonconforming Finite Volume Elements for General Second-Order Elliptic PDEs
    Yang, Min
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (02) : 277 - 291
  • [24] Implicit a posteriori error estimation in cut finite elements
    Sun, Haohan
    Schillinger, Dominik
    Yuan, Si
    COMPUTATIONAL MECHANICS, 2020, 65 (04) : 967 - 988
  • [25] L2 ERROR ESTIMATES FOR A CLASS OF ANY ORDER FINITE VOLUME SCHEMES OVER QUADRILATERAL MESHES
    Lin, Yanping
    Yang, Min
    Zou, Qingsong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (04) : 2030 - 2050
  • [26] A PRIORI ERROR ESTIMATES OF FINITE VOLUME METHODS FOR GENERAL ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Feng, Yuming
    Lu, Zuliang
    Cao, Longzhou
    Li, Lin
    Zhang, Shuhua
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [27] L 2 error estimates and superconvergence of the finite volume element methods on quadrilateral meshes
    Lv, Junliang
    Li, Yonghai
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 37 (03) : 393 - 416
  • [28] A posteriori error estimates for Biot system using a mixed discretization for flow
    Wheeler, Mary F.
    Girault, Vivette
    Li, Hanyu
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 402
  • [29] Error Estimates for the Heterogeneous Multiscale Finite Volume Method of Convection-Diffusion-Reaction Problem
    Yu, Tao
    Ouyang, Peichang
    Cao, Haitao
    COMPLEXITY, 2018,
  • [30] Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations
    Coudière, Y
    Gallouët, T
    Herbin, R
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (04): : 767 - 778