Machine Learning-Based Classification of Vector Vortex Beams

被引:115
作者
Giordani, Taira [1 ]
Suprano, Alessia [1 ]
Polino, Emanuele [1 ]
Acanfora, Francesca [1 ]
Innocenti, Luca [2 ]
Ferraro, Alessandro [2 ]
Paternostro, Mauro [2 ]
Spagnolo, Nicolo [1 ]
Sciarrino, Fabio [1 ,3 ]
机构
[1] Sapienza Univ Roma, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[2] Queens Univ Belfast, Sch Math & Phys, Ctr Theoret Atom Mol & Opt Phys, Belfast BT7 1NN, Antrim, North Ireland
[3] CNR, ISC, Via Taurini 19, I-00185 Rome, Italy
关键词
ORBITAL ANGULAR-MOMENTUM; QUANTUM; LIGHT; ENTANGLEMENT; PROPAGATION; PATTERN; MODES;
D O I
10.1103/PhysRevLett.124.160401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Structured light is attracting significant attention for its diverse applications in both classical and quantum optics. The so-called vector vortex beams display peculiar properties in both contexts due to the nontrivial correlations between optical polarization and orbital angular momentum. Here we demonstrate a new, flexible experimental approach to the classification of vortex vector beams. We first describe a platform for generating arbitrary complex vector vortex beams inspired to photonic quantum walks. We then exploit recent machine learning methods-namely, convolutional neural networks and principal component analysis-to recognize and classify specific polarization patterns. Our study demonstrates the significant advantages resulting from the use of machine learning-based protocols for the construction and characterization of high-dimensional resources for quantum protocols.
引用
收藏
页数:7
相关论文
共 80 条
[21]  
Ciresan D C., 2011, 22 INT JOINT C ART I, Vvol 2, P1237, DOI [DOI 10.5591/978-1-57735-516-8/IJCAI11-210, 10.5555/ 2283516.2283603, DOI 10.5555/2283516.2283603]
[22]   Air-core fiber distribution of hybrid vector vortex-polarization entangled states [J].
Cozzolino, Daniele ;
Polino, Emanuele ;
Valeri, Mauro ;
Carvacho, Gonzalo ;
Bacco, Davide ;
Spagnolo, Nicolo ;
Oxenlowe, Leif K. ;
Sciarrino, Fabio .
ADVANCED PHOTONICS, 2019, 1 (04)
[23]   Orbital Angular Momentum States Enabling Fiber-based High-dimensional Quantum Communication [J].
Cozzolino, Daniele ;
Bacco, Davide ;
Da Lio, Beatrice ;
Ingerslev, Kasper ;
Ding, Yunhong ;
Dalgaard, Kjeld ;
Kristensen, Poul ;
Galili, Michael ;
Rottwitt, Karsten ;
Ramachandran, Siddharth ;
Oxenlowe, Leif Katsuo .
PHYSICAL REVIEW APPLIED, 2019, 11 (06)
[24]  
Cunningham P, 2008, COGN TECHNOL, P91, DOI 10.1007/978-3-540-75171-7_4
[25]   Photonic polarization gears for ultra-sensitive angular measurements [J].
D'Ambrosio, Vincenzo ;
Spagnolo, Nicolo ;
Del Re, Lorenzo ;
Slussarenko, Sergei ;
Li, Ying ;
Kwek, Leong Chuan ;
Marrucci, Lorenzo ;
Walborn, Stephen P. ;
Aolita, Leandro ;
Sciarrino, Fabio .
NATURE COMMUNICATIONS, 2013, 4
[26]   Machine learning approach to OAM beam demultiplexing via convolutional neural networks [J].
Doster, Timothy ;
Watnik, Abbie T. .
APPLIED OPTICS, 2017, 56 (12) :3386-3396
[27]   Twisted photons: new quantum perspectives in high dimensions [J].
Erhard, Manuel ;
Fickler, Robert ;
Krenn, Mario ;
Zeilinger, Anton .
LIGHT-SCIENCE & APPLICATIONS, 2018, 7 :17146-17146
[28]   Quantum Entanglement of High Angular Momenta [J].
Fickler, Robert ;
Lapkiewicz, Radek ;
Plick, William N. ;
Krenn, Mario ;
Schaeff, Christoph ;
Ramelow, Sven ;
Zeilinger, Anton .
SCIENCE, 2012, 338 (6107) :640-643
[29]   Predicting crystal structure by merging data mining with quantum mechanics [J].
Fischer, Christopher C. ;
Tibbetts, Kevin J. ;
Morgan, Dane ;
Ceder, Gerbrand .
NATURE MATERIALS, 2006, 5 (08) :641-646
[30]  
Fodor I. K., 2002, TECHNICAL REPORT