Graphs, local zeta functions, log-Coulomb gases, and phase transitions at finite temperature

被引:2
作者
Zuniga-Galindo, W. A. [1 ,2 ]
Zambrano-Luna, B. A. [3 ]
Leon-Cardenal, E. [4 ]
机构
[1] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, One West Univ Blvd, Brownsville, TX 78520 USA
[2] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Unidad Queretaro, Dept Matemat, Libramiento Norponiente 2000, Santiago De Queretaro 76230, Qro, Mexico
[3] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Matemat, Av Inst Politecn Nacl 2508, Mexico City 07360, DF, Mexico
[4] CONACYT Ctr Invest Matemat, Unidad Zacatecas, Ave Lasec,Manzana 3 Lote 7, Zacatecas 98160, Zac, Mexico
关键词
INTEGRALS; EQUATIONS; FEYNMAN; MODELS; SPACE;
D O I
10.1063/5.0070683
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a log-gas on a network (a finite, simple graph) confined in a bounded subset of a local field (i.e., R, C, and Q(p) being the field of p-adic numbers). In this gas, a log-Coulomb interaction between two charged particles occurs only when the sites of the particles are connected by an edge of the network. The partition functions of such gases turn out to be a particular class of multivariate local zeta functions attached to the network and a positive test function, which is determined by the confining potential. The methods and results of the theory of local zeta functions allow us to establish that the partition functions admit meromorphic continuations in the parameter beta (the inverse of the absolute temperature). We give conditions on the charge distributions and the confining potential such that the meromorphic continuations of the partition functions have a pole at a positive value beta(UV), which implies the existence of phase transitions at finite temperature. In the case of p-adic fields, the meromorphic continuations of the partition functions are rational functions in the variable p(-beta). We give an algorithm for computing such rational functions. For this reason, we can consider the p-adic log-Coulomb gases as exact solvable models. We expect that all these models for different local fields share common properties and that they can be described by a uniform theory.
引用
收藏
页数:21
相关论文
共 56 条
  • [1] Albeverio S., 2010, LONDON MATH SOC LECT, V370
  • [2] p-adic description of characteristic relaxation in complex systems
    Avetisov, VA
    Bikulov, AK
    Al Osipov, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (15): : 4239 - 4246
  • [3] p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes
    Avetisov, VA
    Bikulov, AH
    Kozyrev, SV
    Osipov, VA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (02): : 177 - 189
  • [4] Balakrishnan R., 2023, A Textbook of Graph Theory, V2nd, P397
  • [5] Barry S., 1993, STAT MECH LATTICE GA, VI
  • [6] Local Zeta Functions and Koba-Nielsen String Amplitudes
    Bocardo-Gaspar, Miriam
    Garcia-Compean, Hugo
    Lopez, Edgar Y.
    Zuniga-Galindo, Wilson A.
    [J]. SYMMETRY-BASEL, 2021, 13 (06):
  • [7] Bourbaki N., 1971, ACTUAL SCI IND
  • [8] Zeta functions of discrete groups acting on trees
    Clair, B
    Mokhtari-Sharghi, S
    [J]. JOURNAL OF ALGEBRA, 2001, 237 (02) : 591 - 620
  • [9] Connes A., 1999, SEL MATH-NEW SER, V5, P29, DOI [10.1007/s000290050042, DOI 10.1007/S000290050042]
  • [10] Connes A., 2008, NONCOMMUTATIVE GEOME, Vvol 55