Modulating Local CO2 Concentration as a General Strategy for Enhancing C-C Coupling in CO2 Electroreduction

被引:333
作者
Tan, Ying Chuan [1 ]
Lee, Kelvin Berm [1 ]
Song, Hakhyeon [1 ]
Oh, Jihun [1 ,2 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Mat Sci & Engn, Daehak Ro 291, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, Grad Sch Energy Environm Water & Sustainabil EEWS, 291 Daehak Ro, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol KAIST, KAIST Inst NanoCentury, Daejeon 34141, South Korea
关键词
ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ELECTROCATALYTIC CONVERSION; COPPER-CATALYSTS; ELECTROLYSIS; COVERAGE; INSIGHTS; CHEMICALS; PATHWAYS; PRODUCTS;
D O I
10.1016/j.joule.2020.03.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flow electrolyzers based on gas-diffusion electrodes (GDEs) have been increasingly employed to advance toward industry-relevant electrochemical CO2 reduction reaction (CO2RR) performance, though fundamental understanding of the GDE system is still lacking. Here, we propose that regulating local CO2 concentration on copper (Cu) surfaces is an effective and general strategy to promote C-C coupling in CO2yRR. LocalCO(2) concentration could influence the surface coverage of *CO2, *H, and *CO, which affects the reaction pathways toward multi-carbon (C2+) products. Guided by mass-transport modeling, we have identified three approaches to modulate the local CO2 concentration in GDE-based electrolyzers: (1) catalyst layer structure, (2) feed CO2 concentration, and (3) feed flow rate. Utilizing Cu2O nanoparticles as the model catalysts, modulation of local CO2 concentration enabled an optimized faradaic efficiency toward C2+ products of up to 75.5% at 300 mA cm(-2) and C2+ partial current density of up to 342 mA cm(-2) in 1.0 M KHCO3.
引用
收藏
页码:1104 / 1120
页数:17
相关论文
共 44 条
[1]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[2]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[3]   What would it take for renewably powered electrosynthesis to displace petrochemical processes? [J].
De Luna, Phil ;
Hahn, Christopher ;
Higgins, Drew ;
Jaffer, Shaffiq A. ;
Jaramillo, Thomas F. ;
Sargent, Edward H. .
SCIENCE, 2019, 364 (6438) :350-+
[4]   Quantifying the influence of global warming on unprecedented extreme climate events [J].
Diffenbaugh, Noah S. ;
Singh, Deepti ;
Mankin, Justin S. ;
Horton, Daniel E. ;
Swain, Daniel L. ;
Touma, Danielle ;
Charland, Allison ;
Liu, Yunjie ;
Haugen, Matz ;
Tsiang, Michael ;
Rajaratnam, Bala .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (19) :4881-4886
[5]   CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface [J].
Dinh, Cao-Thang ;
Burdyny, Thomas ;
Kibria, Md Golam ;
Seifitokaldani, Ali ;
Gabardo, Christine M. ;
de Arquer, F. Pelayo Garcia ;
Kiani, Amirreza ;
Edwards, Jonathan P. ;
De Luna, Phil ;
Bushuyev, Oleksandr S. ;
Zou, Chengqin ;
Quintero-Bermudez, Rafael ;
Pang, Yuanjie ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2018, 360 (6390) :783-787
[6]   Multilayer Electrolyzer Stack Converts Carbon Dioxide to Gas Products at High Pressure with High Efficiency [J].
Endrodi, B. ;
Kecsenovity, E. ;
Samu, A. ;
Darvas, F. ;
Jones, R. V. ;
Torok, V. ;
Danyi, A. ;
Janaky, C. .
ACS ENERGY LETTERS, 2019, 4 (07) :1770-1777
[7]   Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly [J].
Gabardo, Christine M. ;
O'Brien, Colin P. ;
Edwards, Jonathan P. ;
McCallum, Christopher ;
Xu, Yi ;
Dinh, Cao-Thang ;
Li, Jun ;
Sargent, Edward H. ;
Sinton, David .
JOULE, 2019, 3 (11) :2777-2791
[8]   Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products [J].
Gao, Dunfeng ;
Aran-Ais, Rosa M. ;
Jeon, Hyo Sang ;
Roldan Cuenya, Beatriz .
NATURE CATALYSIS, 2019, 2 (03) :198-210
[9]   Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model [J].
Goodpaster, Jason D. ;
Bell, Alexis T. ;
Head-Gordon, Martin .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (08) :1471-1477
[10]   Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions [J].
Gupta, N ;
Gattrell, M ;
MacDougall, B .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2006, 36 (02) :161-172