The concept of physical and fractal dimension II. The differential calculus in dimensional spaces

被引:22
作者
Rybaczuk, M
Kedzia, A
Zielinski, W
机构
[1] Wroclaw Univ Technol, Inst Mat Sci & Appl Mech, PL-50370 Wroclaw, Poland
[2] Med Acad Wroclaw, Normal Anat Dept, PL-50139 Wroclaw, Poland
关键词
D O I
10.1016/S0960-0779(00)00231-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The projective dimensional analysis based on the projective extension of scaling group and projective dimensional function is studied. The differential calculus corresponding to geometry of dimensional spaces is constructed and examined. At the next step we explore the projective extension of dimensional derivatives. Simple fractal models of various processes with changing fractal dimension illustrate the proposed methods. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2537 / 2552
页数:16
相关论文
共 13 条
[1]  
[Anonymous], 1938, OPERATIONS INFINITES
[2]  
BERGER M, 1977, GEOMETRIE
[3]  
Drobot S, 1954, STUD MATH, V14, P84
[4]  
Falconer K., 1997, Techniques in fractal geometry
[5]  
Falconer K., 1990, FRACTAL GEOMETRY MAT, V2
[6]  
KASPRZAK W, 2000, MEASUREMENTS DIMENSI
[7]  
Kasprzak W., 1990, DIMENSIONAL ANAL IDE
[8]   Scale relativity and fractal space-time: Applications to quantum physics, cosmology and chaotic systems [J].
Nottale, L .
CHAOS SOLITONS & FRACTALS, 1996, 7 (06) :877-938
[9]   The fractal growth of fatigue defects in materials [J].
Rybaczuk, M ;
Stoppel, P .
INTERNATIONAL JOURNAL OF FRACTURE, 2000, 103 (01) :71-94
[10]   The concept of physical and fractal dimension I. The projective dimensions [J].
Rybaczuk, M ;
Zielinski, W .
CHAOS SOLITONS & FRACTALS, 2001, 12 (13) :2517-2535