Three-dimensional structure of thermal waves in Venus? mesosphere from ground-based observations

被引:1
作者
Giles, Rohini S. [1 ]
Greathouse, Thomas K. [1 ]
Irwin, Patrick G. J. [2 ]
Encrenaz, Therese [3 ]
Brecht, Amanda S. [4 ]
机构
[1] Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX 78238 USA
[2] Univ Oxford, Dept Phys, Oxford, England
[3] LEISA, Observ Paris, Paris, France
[4] NASA Ames Res Ctr, Moffett Field, CA USA
基金
美国国家航空航天局;
关键词
Venus; atmosphere; Spectroscopy; Infrared observations; Atmospheres; structure; RADIATIVE-TRANSFER; MIDDLE ATMOSPHERE; CLOUD-TOP; TEMPERATURE; ABSORPTION; WINDS; EMISSION; MODEL; TIDES;
D O I
10.1016/j.icarus.2022.115187
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
High spectral resolution observations of Venus were obtained with the TEXES instrument at NASA's Infrared Telescope Facility. These observations focus on a CO2 absorption feature at 791.4 cm(-1 )as the shape of this absorption feature can be used to retrieve the vertical temperature profile in Venus' mesosphere. By scan -mapping the planet, we are able to build up three-dimensional temperature maps of Venus' atmosphere, covering one Earth-facing hemisphere and an altitude range of 60-83 km. A temperature map from February 12, 2019 clearly shows the three-dimensional structure of a planetary-scale thermal wave. This wave pattern appears strongest in the mid-latitudes of Venus, has a zonal wavenumber of 2-4 and the wave fronts tilt eastward with altitude at an angle of 8-15 degrees per km. This is consistent with a thermal tide propagating upwards from Venus' upper cloud decks. Ground-based observations provide the opportunity to study Venus' temperature structure on an ongoing basis.
引用
收藏
页数:9
相关论文
共 35 条
[1]   Thermal Tides in the Upper Cloud Layer of Venus as Deduced From the Emission Angle Dependence of the Brightness Temperature by Akatsuki/LIR [J].
Akiba, Masahiro ;
Taguchi, Makoto ;
Fukuhara, Tetsuya ;
Imamura, Takeshi ;
Kouyama, Toru ;
Sato, Takao M. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2021, 126 (10)
[2]   The character of the thermal emission from Venus [J].
Apt, Jerome ;
Brown, Robert A. ;
Goody, Richard M. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1980, 85 (A13) :7934-7940
[3]   ZONAL WINDS NEAR VENUS CLOUD TOP LEVEL - A MODEL STUDY OF THE INTERACTION BETWEEN THE ZONAL MEAN CIRCULATION AND THE SEMIDIURNAL TIDE [J].
BAKER, NL ;
LEOVY, CB .
ICARUS, 1987, 69 (02) :202-220
[4]   Chemical Cycling in the Venusian Atmosphere: A Full Photochemical Model Fromthe Surface to 110 km [J].
Bierson, C. J. ;
Zhang, X. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2020, 125 (07)
[5]   Atmospheric radiative transfer modeling: a summary of the AER codes [J].
Clough, SA ;
Shephard, MW ;
Mlawer, E ;
Delamere, JS ;
Iacono, M ;
Cady-Pereira, K ;
Boukabara, S ;
Brown, PD .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2005, 91 (02) :233-244
[6]   Transmission spectrum of Venus as a transiting exoplanet [J].
Ehrenreich, D. ;
Vidal-Madjar, A. ;
Widemann, T. ;
Gronoff, G. ;
Tanga, P. ;
Barthelemy, M. ;
Lilensten, J. ;
Etangs, A. Lecavelier des ;
Arnold, L. .
ASTRONOMY & ASTROPHYSICS, 2012, 537
[7]  
Fels S. B., 1974, Geophysical Fluid Dynamics, V6, P149, DOI 10.1080/03091927409365793
[8]  
Gierasch PJ, 1997, SPACE SCI S, P459
[9]   The HITRAN2020 molecular spectroscopic database [J].
Gordon, I. E. ;
Rothman, L. S. ;
Hargreaves, R. J. ;
Hashemi, R. ;
Karlovets, E., V ;
Skinner, F. M. ;
Conway, E. K. ;
Hill, C. ;
Kochanov, R., V ;
Tan, Y. ;
Wcislo, P. ;
Finenko, A. A. ;
Nelson, K. ;
Bernath, P. F. ;
Birk, M. ;
Boudon, V ;
Campargue, A. ;
Chance, K., V ;
Coustenis, A. ;
Drouin, B. J. ;
Flaud, J-M ;
Gamache, R. R. ;
Hodges, J. T. ;
Jacquemart, D. ;
Mlawer, E. J. ;
Nikitin, A., V ;
Perevalov, V., I ;
Rotger, M. ;
Tennyson, J. ;
Toon, G. C. ;
Tran, H. ;
Tyuterev, V. G. ;
Adkins, E. M. ;
Baker, A. ;
Barbe, A. ;
Cane, E. ;
Csaszar, A. G. ;
Dudaryonok, A. ;
Egorov, O. ;
Fleisher, A. J. ;
Fleurbaey, H. ;
Foltynowicz, A. ;
Furtenbacher, T. ;
Harrison, J. J. ;
Hartmann, J-M ;
Horneman, V-M ;
Huang, X. ;
Karman, T. ;
Karns, J. ;
Kassi, S. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 277
[10]   The NEMESIS planetary atmosphere radiative transfer and retrieval tool [J].
Irwin, P. G. J. ;
Teanby, N. A. ;
de Kok, R. ;
Fletcher, L. N. ;
Howett, C. J. A. ;
Tsang, C. C. C. ;
Wilson, C. F. ;
Calcutt, S. B. ;
Nixon, C. A. ;
Parrish, P. D. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2008, 109 (06) :1136-1150