A physically cross-linked self-healable double-network polymer hydrogel as a framework for nanomaterial

被引:36
作者
Zhuang, Yuan [1 ]
Kong, Yan [1 ]
Han, Kun [1 ]
Hao, Haotian [1 ]
Shi, Baoyou [1 ,2 ]
机构
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Drinking Water Sci & Technol, Beijing 100085, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
NANOCOMPOSITE HYDROGEL; GRAPHENE OXIDE; ADSORPTION CAPACITY; AQUEOUS-SOLUTION; METHYLENE-BLUE; 1ST NETWORK; ALGINATE; TOUGH; MEMBRANES; MEDICINE;
D O I
10.1039/c7nj03392c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To investigate the formation mechanism of a physically cross-linked double-network hydrogel and its application as a framework for nanomaterial, in this work, calcium alginate and polyvinyl alcohol (PVA) were selected as hydrogel-forming polymers to form a double-network hydrogel utilized as a framework for graphene oxide (GO). The results showed that completely physically cross-linked double-network hydrogels were obtained with good shape-recovery and self-healing properties. Moreover, the first network had a significant influence on the properties of double networks: when calcium alginate acts as the first network, the hydrogels have denser structures, a lower swelling ratio and higher mechanical properties. The GO/double-network composite hydrogel shows a 3D porous network structure with no obvious aggregation of GO nanosheets and an excellent removal rate for methylene blue. The results indicate the potential of the polymer double network utilized as a nanomaterial framework in biomedical and environmental areas.
引用
收藏
页码:15127 / 15135
页数:9
相关论文
共 43 条
[1]   25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine [J].
Annabi, Nasim ;
Tamayol, Ali ;
Uquillas, Jorge Alfredo ;
Akbari, Mohsen ;
Bertassoni, Luiz E. ;
Cha, Chaenyung ;
Camci-Unal, Gulden ;
Dokmeci, Mehmet R. ;
Peppas, Nicholas A. ;
Khademhosseini, Ali .
ADVANCED MATERIALS, 2014, 26 (01) :85-124
[2]   A pH-sensitive graphene oxide composite hydrogel [J].
Bai, Hua ;
Li, Chun ;
Wang, Xiaolin ;
Shi, Gaoquan .
CHEMICAL COMMUNICATIONS, 2010, 46 (14) :2376-2378
[3]   Graphene-Polymer Nanofiber Membrane for Ultrafast Photonics [J].
Bao, Qiaoliang ;
Zhang, Han ;
Yang, Jia-xiang ;
Wang, Shuai ;
Tong, Ding Yuan ;
Jose, Rajan ;
Ramakrishna, Seeram ;
Lim, Chwee Teck ;
Loh, Kian Ping .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (05) :782-791
[4]   Controlled release of biomolecules from temperature-sensitive hydrogels prepared by radiation polymerization [J].
Caliceti, P ;
Salmaso, S ;
Lante, A ;
Yoshida, M ;
Katakai, R ;
Martellini, F ;
Mei, LHI ;
Carenza, M .
JOURNAL OF CONTROLLED RELEASE, 2001, 75 (1-2) :173-181
[5]   Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides [J].
Cao, Keteng ;
Jiang, Zhongyi ;
Zhao, Jing ;
Zhao, Cuihong ;
Gao, Chengyun ;
Pan, Fusheng ;
Wang, Baoyi ;
Cao, Xingzhong ;
Yang, Jing .
JOURNAL OF MEMBRANE SCIENCE, 2014, 469 :272-283
[6]   A Novel Design Strategy for Fully Physically Linked Double Network Hydrogels with Tough, Fatigue Resistant, and Self-Healing Properties [J].
Chen, Qiang ;
Zhu, Lin ;
Chen, Hong ;
Yan, Hongli ;
Huang, Lina ;
Yang, Jia ;
Zheng, Jie .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (10) :1598-1607
[7]   Fracture of the Physically Cross-Linked First Network in Hybrid Double Network Hydrogels [J].
Chen, Qiang ;
Zhu, Lin ;
Huang, Lina ;
Chen, Hong ;
Xu, Kun ;
Tan, Yin ;
Wang, Pixin ;
Zheng, Jie .
MACROMOLECULES, 2014, 47 (06) :2140-2148
[8]   Stretchable and Self-Healing Graphene Oxide-Polymer Composite Hydrogels: A Dual-Network Design [J].
Cong, Huai-Ping ;
Wang, Ping ;
Yu, Shu-Hong .
CHEMISTRY OF MATERIALS, 2013, 25 (16) :3357-3362
[9]   Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity [J].
Fan, Jinchen ;
Shi, Zixing ;
Lian, Min ;
Li, Hong ;
Yin, Jie .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (25) :7433-7443
[10]   ADSORPTION OF ETHOXYLATED ALKYLPHENOL-FORMALDEHYDE POLYMERIC SURFACTANTS AT THE AQUEOUS-SOLUTION AIR INTERFACE [J].
GENDY, TS ;
BARAKAT, Y ;
MEAD, AI .
POLYMER INTERNATIONAL, 1994, 33 (03) :247-252