Lemniscates and K-spectral sets

被引:5
|
作者
Nevanlinna, Olavi [1 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, FI-00076 Espoo, Aalto, Finland
关键词
von Neumann spectral sets; K-spectral sets; Lemniscates; Multicentric representation; Jacobi series; Riesz spectral projections; HILBERT-SPACE; OPERATORS;
D O I
10.1016/j.jfa.2011.11.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how multicentric representation of functions provides a simple way to generalize the von Neumann result that the unit disc is a spectral set for contractions in Hilbert spaces. In particular the sets need not be connected and the results can be applied to bounding Riesz spectral projections. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1728 / 1741
页数:14
相关论文
共 15 条
  • [1] Tests for complete K-spectral sets
    Dritschel, Michael A.
    Estevez, Daniel
    Yakubovich, Dmitry
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (03) : 984 - 1019
  • [2] Convex domains and K-spectral sets
    Catalin Badea
    Michel Crouzeix
    Bernard Delyon
    Mathematische Zeitschrift, 2006, 252 : 345 - 365
  • [3] THE ANNULUS AS A K-SPECTRAL SET
    Crouzeix, Michel
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (06) : 2291 - 2303
  • [4] Families of Spectral Sets for Bernoulli Convolutions
    Palle E. T. Jorgensen
    Keri A. Kornelson
    Karen L. Shuman
    Journal of Fourier Analysis and Applications, 2011, 17 : 431 - 456
  • [5] COMPLETE SPECTRAL SETS AND NUMERICAL RANGE
    Davidson, Kenneth R.
    Paulsen, Vern I.
    Woerdeman, Hugo J.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (03) : 1189 - 1195
  • [6] Families of Spectral Sets for Bernoulli Convolutions
    Jorgensen, Palle E. T.
    Kornelson, Keri A.
    Shuman, Karen L.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (03) : 431 - 456
  • [7] On operators with spectrum in Cantor sets and spectral synthesis
    Zarrabi, Mohamed
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 764 - 776
  • [8] A classification of aperiodic order via spectral metrics and Jarnik sets
    Groeger, Maik
    Kesseboehmer, Marc
    Mosbach, Arne
    Samuel, Tony
    Steffens, Malte
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 3031 - 3065
  • [9] Boundaries, spectral triples and K-homology
    Forsyth, Iain
    Goffeng, Magnus
    Mesland, Bram
    Rennie, Adam
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2019, 13 (02) : 407 - 472
  • [10] Paranormal and (p, k)-quasihyponormal operators: Spectral continuity
    Duggal B.P.
    Rendiconti del Circolo Matematico di Palermo, 2007, 56 (1) : 57 - 64