Segmentation of brain MR images using hidden Markov random field model with weighting neighborhood system

被引:0
作者
Chen, T
Huang, TS
Liang, ZP
机构
来源
2004 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-7 | 2004年
关键词
segmentation; hidden Markov random field model; Markov random field theory; brain MRI; finite Gaussian mixture model;
D O I
暂无
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Current state-of-the-art segmentation techniques of brain MR images improve segmentation accuracy by encoding spatial information through hidden Markov random field (HMRF) model. However, HMRF model has higher computational overhead compared to finite Gaussian mixture (FGM) model but the segmentation results are with no significant difference when applying to cleaner data. We believe this is because the spatial constraint is too simple to utilize the characteristics of the brain. In this paper, we propose a novel method to improve the neighborhood system of the HMRF model by better characterizing natural structures of human brain. Experiments on both real and synthetic 3D brain MR images show that the segmentation results of our method have higher accuracy compared to existing solutions.
引用
收藏
页码:3209 / 3212
页数:4
相关论文
共 9 条
[1]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[2]   MRI SEGMENTATION - METHODS AND APPLICATIONS [J].
CLARKE, LP ;
VELTHUIZEN, RP ;
CAMACHO, MA ;
HEINE, JJ ;
VAIDYANATHAN, M ;
HALL, LO ;
THATCHER, RW ;
SILBIGER, ML .
MAGNETIC RESONANCE IMAGING, 1995, 13 (03) :343-368
[3]  
Cuadra MB, 2002, LECT NOTES COMPUT SC, V2488, P290
[4]   Estimating the bias field of MR images [J].
Guillemaud, R ;
Brady, M .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (03) :238-251
[5]   MRI simulation-based evaluation of image-processing and classification methods [J].
Kwan, RKS ;
Evans, AC ;
Pike, GB .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (11) :1085-1097
[6]  
SOLANAS E, 2001, INT C IM PROC ICIP
[7]   Adaptive segmentation of MRI data [J].
Wells, WM ;
Grimson, WEL ;
Kikinis, R ;
Jolesz, FA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1996, 15 (04) :429-442
[8]   Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm [J].
Zhang, YY ;
Brady, M ;
Smith, S .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (01) :45-57
[9]  
Zhu SC, 1996, IEEE T PATTERN ANAL, V18, P884, DOI 10.1109/34.537343