INFINITESIMAL GLUING EQUATIONS AND THE ADJOINT HYPERBOLIC REIDEMEISTER TORSION

被引:0
作者
Siejakowski, Rafal [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Hyperbolic; 3-manifolds; Reidemeister torsion; ideal triangulations; gluing equations; COHOMOLOGY; VOLUME;
D O I
10.2748/tmj.20200828
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a link between the derivatives of Thurston's hyperbolic gluing equations on an ideally triangulated finite volume hyperbolic 3-manifold and the cohomology of the sheaf of infinitesimal isometrics. This provides a geometric reformulation of the non-abelian Reidemeister torsion corresponding to the adjoint of the monodromy representation of the hyperbolic structure. These results are then applied to the study of the 'Hoop Conjecture' of Dimofte-Garoufalidis, which we generalize to arbitrary 1-cusped hyperbolic 3-manifolds. We verify the generalized conjecture in the case of the sister manifold of the figure-eight knot complement.
引用
收藏
页码:597 / 626
页数:30
相关论文
共 34 条