Nodal-line densities of chaotic quantum billiard modes satisfying mixed boundary conditions

被引:6
作者
Berry, MV
Ishio, H
机构
[1] HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[2] Nagoya Univ, Inst Adv Res, Nagoya, Aichi 4648601, Japan
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 29期
关键词
D O I
10.1088/0305-4470/38/29/L01
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Statistics of nodal lines for eigenmodes u in the stadium are computed, and compared with previously derived formulae for monochromatic boundary-adapted Gaussian random waves in the plane. These modes and random waves satisfy the Helmholtz equation, and mixed boundary conditions in which a linear combination of u and its normal derivative must vanish. For the density of nodal lines and the excess density of nodal lines arising from the boundary, the Gaussian model accurately describes the statistics of the billiard eigenfunctions.
引用
收藏
页码:L513 / L518
页数:6
相关论文
共 14 条
[1]  
Baltes H. P., 1976, Spectra of Finite Systems
[2]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[3]   Phase singularities in isotropic random waves [J].
Berry, MV ;
Dennis, MR .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2001) :2059-2079
[4]   Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature [J].
Berry, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (13) :3025-3038
[5]   Nodal densities of Gaussian random waves satisfying mixed boundary conditions [J].
Berry, MV ;
Ishio, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (29) :5961-5972
[6]   HIGH ORDERS OF THE WEYL EXPANSION FOR QUANTUM BILLIARDS - RESURGENCE OF PERIODIC-ORBITS, AND THE STOKES PHENOMENON [J].
BERRY, MV ;
HOWLS, CJ .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1994, 447 (1931) :527-555
[7]  
BERRY MV, 1983, SCH P HOUCH SCH SESS, V36, P171
[8]   Nodal domains statistics: A criterion for quantum chaos [J].
Blum, G ;
Gnutzmann, S ;
Smilansky, U .
PHYSICAL REVIEW LETTERS, 2002, 88 (11) :4-114101
[9]  
HELLER EJ, 1991, WAVEPACKET DYNAMICS, V52, P547
[10]   PROPERTIES OF RANDOM SUPERPOSITIONS OF PLANE-WAVES [J].
OCONNOR, P ;
GEHLEN, J ;
HELLER, EJ .
PHYSICAL REVIEW LETTERS, 1987, 58 (13) :1296-1299