Compactness and invariance properties of evolution operators associated with Kolmogorov operators with unbounded coefficients

被引:15
作者
Angiuli, Luciana [2 ]
Lorenzi, Luca [1 ]
机构
[1] Univ Parma, Dipartimento Matemat, I-43124 Parma, Italy
[2] Univ Salento, Dipartimento Matemat Ennio De Giorgi, I-73100 Lecce, Italy
关键词
Nonautonomous second-order elliptic operators; Unbounded coefficients; Evolution operators; Compactness; Invariant subspaces; ORNSTEIN-UHLENBECK EQUATIONS; FELLER SEMIGROUPS; BEHAVIOR;
D O I
10.1016/j.jmaa.2010.12.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider nonautonomous elliptic operators A with nontrivial potential term defined in I x R-d. where I is a right-halfline (possibly I = R). We prove that we can associate an evolution operator (G (t, s)) with A in the space of all bounded and continuous functions on R-d. We also study the compactness properties of the operator G(t, s). Finally. we provide sufficient conditions guaranteeing that each operator G(t, s) preserves the usual L-p-spaces and C-0(R-d). (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:125 / 149
页数:25
相关论文
共 17 条
[1]  
Acquistapace P., 1998, DIFFERENTIAL INTEGRA, V1, P433
[2]  
Angiuli L, 2010, RIV MAT UNIV PARMA, V1, P347
[3]  
[Anonymous], 1968, TRANSLATIONS MATH MO
[4]  
AZENCOTT R, 1974, B SOC MATH FR, V102, P193
[5]  
Da Prato G, 2008, PROG PROBAB, V59, P115
[6]   Ornstein-Uhlenbeck operators with time periodic coefficients [J].
Da Prato, Giuseppe ;
Lunardi, Alessandra .
JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (04) :587-614
[7]   3 CLASSES OF INFINITE-DIMENSIONAL DIFFUSIONS [J].
DYNKIN, EB .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 86 (01) :75-110
[8]  
Friedman A., 1983, Partial Differential Equations
[9]   Invariant measures and maximal L2 regularity for nonautonomous Ornstein-Uhlenbeck equations [J].
Geissert, Matthias ;
Lunardi, Alessandra .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 :719-740
[10]   Asymptotic behavior and hypercontractivity in non-autonomous Ornstein-Uhlenbeck equations [J].
Geissert, Matthias ;
Lunardi, Alessandra .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 :85-106