The Role of the Conformational Dynamics of Glutathione S-Transferase Epsilon Class on Insecticide Resistance in Anopheles gambiae

被引:6
作者
Pontes, Frederico J. S. [1 ]
Maia, Rafael T. [1 ]
Lima, Maria Carolina P. [1 ]
Ayres, Constancia F. J. [2 ]
Soares, Thereza A. [1 ]
机构
[1] Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740560 Recife, PE, Brazil
[2] Fiocruz MS, Ctr Pesquisas Aggeu Magalhaes, Dept Entomol, BR-50670420 Recife, PE, Brazil
关键词
molecular dynamics simulation; evolutional constraint; positive and negative selection; metabolic resistance; malaria vector; GROMOS FORCE-FIELD; PROTEIN-STRUCTURE PREDICTION; SWISS-MODEL WORKSPACE; PARTICLE MESH EWALD; CATALYTIC MECHANISM; MOLECULAR-DYNAMICS; ALGORITHM; HOMOLOGY; BINDING; SEQUENCE;
D O I
10.5935/0103-5053.20160040
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Glutathione S-transferases (GSTs) are enzymes capable of metabolizing cytotoxic compounds. The enzyme AgGSTE2, member of epsilon class GSTs (GSTE), is the most important GST conferring resistance to dichloro-diphenyl-trichloroethane (DDT) in Anopheles gambiae. We have investigated the conformational dynamics of three GSTE variants (GSTE2, GSTE2-I114T/F120L, GSTE5) from A. gambiae. Large-scale motions of helices H2 and H4 and conformational transition of the C-terminal governs the opening of the G-site and is expected to affect substrate binding and product release. This structural rearrangement places Glu116 (Glu120 in GSTE5) close of the thiol group of the tripeptide glutathione (GSH) cofactor, making this residue a candidate to act as a base in the activation of DDT. The structural rearrangement is noticeable for AgGSTE2-F120L, which has been shown to confer increased DDT-resistance. The other variants exhibit a more subtle rearrangement. These findings corroborate the hypothesis that the increase of the conformational dynamics of GST Epsilon class isoforms from A. gambiae promotes higher DDTase activity.
引用
收藏
页码:1602 / 1615
页数:14
相关论文
共 74 条
[1]   Molecular dynamics: Survey of methods for simulating the activity of proteins [J].
Adcock, Stewart A. ;
McCammon, J. Andrew .
CHEMICAL REVIEWS, 2006, 106 (05) :1589-1615
[2]   The role of tyrosine-9 and the C-terminal helix in the catalytic mechanism of Alpha-class glutathione S-transferases [J].
Allardyce, CS ;
McDonagh, PD ;
Lian, LY ;
Wolf, CR ;
Roberts, GCK .
BIOCHEMICAL JOURNAL, 1999, 343 :525-531
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]   ESSENTIAL DYNAMICS OF PROTEINS [J].
AMADEI, A ;
LINSSEN, ABM ;
BERENDSEN, HJC .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :412-425
[5]   Structure, catalytic mechanism, and evolution of the glutathione transferases [J].
Armstrong, RN .
CHEMICAL RESEARCH IN TOXICOLOGY, 1997, 10 (01) :2-18
[6]   The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling [J].
Arnold, K ;
Bordoli, L ;
Kopp, J ;
Schwede, T .
BIOINFORMATICS, 2006, 22 (02) :195-201
[7]   Comparative Genomics of the Anopheline Glutathione S-Transferase Epsilon Cluster [J].
Ayres, Constancia ;
Mueller, Pie ;
Dyer, Naomi ;
Wilding, Craig ;
Rigden, Daniel ;
Donnelly, Martin .
PLOS ONE, 2011, 6 (12)
[8]   Protein structure prediction and structural genomics [J].
Baker, D ;
Sali, A .
SCIENCE, 2001, 294 (5540) :93-96
[9]  
Berendsen H. J. C., 1981, INTERMOLECULAR FORCE, P331, DOI [DOI 10.1007/978-94-015-7658-121, DOI 10.1007/978-94-015-7658-1_21]
[10]   Protein structure homology modeling using SWISS-MODEL workspace [J].
Bordoli, Lorenza ;
Kiefer, Florian ;
Arnold, Konstantin ;
Benkert, Pascal ;
Battey, James ;
Schwede, Torsten .
NATURE PROTOCOLS, 2009, 4 (01) :1-13