共 66 条
Methods for characterizing the material properties of biomolecular condensates
被引:56
作者:
Alshareedah, Ibraheem
[1
]
Kaur, Taranpreet
[1
]
Banerjee, Priya R.
[1
]
机构:
[1] Univ Buffalo, Dept Phys, Buffalo, NY 14260 USA
来源:
LIQUID-LIQUID PHASE COEXISTENCE AND MEMBRANELESS ORGANELLES
|
2021年
/
646卷
基金:
美国国家卫生研究院;
关键词:
PHASE-SEPARATION;
FLUORESCENCE RECOVERY;
STRESS GRANULES;
DROPLETS;
TRANSITION;
COALESCENCE;
DOMAINS;
MODELS;
D O I:
10.1016/bs.mie.2020.06.009
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
Biomolecular condensates are membrane-less sub-cellular compartments that perform a plethora of important functions in signaling and storage. The material properties of biomolecular condensates such as viscosity, surface tension, viscoelasticity, and macromolecular diffusion play important roles in regulating their biological functions. Aberrations in these properties have been implicated in various neurodegenerative disorders and certain types of cancer. Unraveling the molecular driving forces that control the fluid structure and dynamics of biomolecular condensates across different lengthand time-scales necessitates the application of innovative biophysical methodologies. In this chapter, we discuss major experimental techniques that are widely used to study the material states and dynamics of biomolecular condensates as well as their practical and conceptual limitations. We end this chapter with a discussion on more advanced tools that are currently emerging to address the complex fluid dynamics of these condensates.
引用
收藏
页码:143 / 183
页数:41
相关论文