Wide-gap (Ag,Cu)(In,Ga)Se2 solar cells with different buffer materials-A path to a better heterojunction

被引:64
作者
Keller, Jan [1 ]
Sopiha, Kostiantyn, V [1 ]
Stolt, Olof [1 ]
Stolt, Lars [1 ]
Persson, Clas [2 ,3 ]
Scragg, Jonathan J. S. [1 ]
Torndahl, Tobias [1 ]
Edoff, Marika [1 ]
机构
[1] Uppsala Univ, Angstrom Solar Ctr, Div Solid State Elect, SE-75121 Uppsala, Sweden
[2] KTH Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden
[3] Univ Oslo, Dept Phys, NO-0316 Oslo, Norway
来源
PROGRESS IN PHOTOVOLTAICS | 2020年 / 28卷 / 04期
关键词
ACIGS; CIGS; high V-OC; wide-gap chalcopyrite; Zn-Sn-O (ZTO); OPEN-CIRCUIT VOLTAGE; TOTAL-ENERGY CALCULATIONS; DETAILED BALANCE LIMIT; ELECTRONIC-PROPERTIES; BAND OFFSETS; THIN-FILMS; EFFICIENCY; CU(IN; GA)SE-2; DEPOSITION; TEMPERATURE;
D O I
10.1002/pip.3232
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This contribution concerns the effect of the Ag content in wide-gap AgwCu1-wIn1-xGaxSe2 (ACIGS) absorber films and its impact on solar cell performance. First-principles calculations are conducted, predicting trends in absorber band gap energy (E-g) and band structure across the entire compositional range (w and x). It is revealed that a detrimental negative conduction band offset (CBO) with a CdS buffer can be avoided for all possible absorber band gap values (E-g = 1.0-1.8 eV) by adjusting the Ag alloying level. This opens a new path to reduce interface recombination in wide-gap chalcopyrite solar cells. Indeed, corresponding samples show a clear increase in open-circuit voltage (V-OC) if a positive CBO is created by sufficient Ag addition. A further extension of the beneficial compositional range (positive CBO at buffer/ACIGS interface) is possible when exchanging CdS with Zn1-ySnyOz, because of its lower electron affinity (chi). Nevertheless, the experimental results strongly suggest that at present, residual interface recombination still limits the performance of solar cells with optimized CBO, which show an efficiency of up to 15.1% for an absorber band gap of E-g = 1.45 eV.
引用
收藏
页码:237 / 250
页数:14
相关论文
共 70 条
[1]   SOLID-SOLUTION, LATTICE-PARAMETER VALUES, AND EFFECTS OF ELECTRONEGATIVITY IN THE (CU1-XAGX)(GA1-YINY)(SE1-ZTEZ)2 ALLOYS [J].
AVON, JE ;
YOODEE, K ;
WOOLLEY, JC .
JOURNAL OF APPLIED PHYSICS, 1984, 55 (02) :524-535
[2]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[3]   Structural and optical properties of (Ag,Cu)(In,Ga)Se2 polycrystalline thin film alloys [J].
Boyle, J. H. ;
McCandless, B. E. ;
Shafarman, W. N. ;
Birkmire, R. W. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (22)
[4]  
Boyle J, 2009, IEEE PHOT SPEC CONF, P861, DOI 10.1109/PVSC.2009.5411272
[5]   Limiting efficiency for a multi-band solar cell containing three and four bands [J].
Brown, AS ;
Green, MA ;
Corkish, RP .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (1-2) :121-125
[6]   The Comparison of (Ag,Cu)(In,Ga)Se2 and Cu(In,Ga)Se2 Thin Films Deposited by Three-Stage Coevaporation [J].
Chen, Lei ;
Lee, JinWoo ;
Shafarman, William N. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (01) :447-451
[7]  
CHEN SW, 2007, EARTHQUAKE RESISTANT, V2, P75, DOI DOI 10.1103/PhysRevB.75.205209
[8]   Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency [J].
Contreras, Miguel A. ;
Mansfield, Lorelle M. ;
Egaas, Brian ;
Li, Jian ;
Romero, Manuel ;
Noufi, Rommel ;
Rudiger-Voigt, Eveline ;
Mannstadt, Wolfgang .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (07) :843-850
[9]   Secondary phase formation and surface modification from a high dose KF-post deposition treatment of (Ag,Cu)(In,Ga)Se2 solar cell absorbers [J].
Donzel-Gargand, Olivier ;
Larsson, Fredrik ;
Torndahl, Tobias ;
Stolt, Lars ;
Edoff, Marika .
PROGRESS IN PHOTOVOLTAICS, 2019, 27 (03) :220-228
[10]   High Voc in (Cu,Ag)(In,Ga)Se2 Solar Cells [J].
Edoff, Marika ;
Jarmar, Tobias ;
Nilsson, Nina Shariati ;
Wallin, Erik ;
Hogstrom, Daniel ;
Stolt, Olof ;
Lundberg, Olle ;
Shafarman, William ;
Stolt, Lars .
IEEE JOURNAL OF PHOTOVOLTAICS, 2017, 7 (06) :1789-1794