Kodaira dimension of almost Kahler manifolds and curvature of the canonical connection

被引:8
作者
Cattaneo, Andrea [1 ]
Nannicini, Antonella [1 ]
Tomassini, Adriano [2 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Univ Parma, Dipartimento Sci Matemat Fis & Informat, Unita Matemat & Informat, Parco Area Sci 53-A, I-43124 Parma, Italy
关键词
Kodaira dimension; Almost complex manifolds; Almost Kahler manifolds; Canonical connection;
D O I
10.1007/s10231-020-00944-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of Kodaira dimension has recently been extended to general almost complex manifolds. In this paper we focus on the Kodaira dimension of almost Kahler manifolds, providing an explicit computation for a family of almost Kahler threefolds on the differentiable manifold underlying a Nakamura manifold. We concentrate also on the link between Kodaira dimension and the curvature of the canonical connection of an almost Kahler manifold and show that in the previous example (and in another one obtained from a Kodaira surface) the Ricci curvature of the almost Kahler metric vanishes for all the members of the family.
引用
收藏
页码:1815 / 1842
页数:28
相关论文
共 12 条
[1]  
[Anonymous], 2015, ANAL COMPLEX GEOMETR
[2]  
Chen H., 2018, ARXIV180800885MATHDG
[3]   On solvable generalized Calabi-Yau manifolds [J].
De Bartolomeis, Paolo ;
Tomassini, Adriano .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (05) :1281-1296
[4]  
DeBartolomeis P, 1996, J DIFFER GEOM, V43, P231
[5]  
Gauduchon P, 1997, B UNIONE MAT ITAL, V11B, P257
[6]  
Li Tian-Jun., 2010, HDB GEOMETRIC ANAL, V14, P231
[7]  
Nakamura I., 1975, J. Differ. Geom., V10, P85
[8]   Taming symplectic forms and the Calabi-Yau equation [J].
Tosatti, Valentino ;
Weinkove, Ben ;
Yau, Shing-Tung .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 97 :401-424
[9]   THE CALABI-YAU EQUATION ON THE KODAIRA-THURSTON MANIFOLD [J].
Tosatti, Valentino ;
Weinkove, Ben .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2011, 10 (02) :437-447
[10]  
Yang X, 2017, ARXIV170601122MATHDG