FEF-2α regulates murine hematopoietic development in an erythropoietin-dependent manner

被引:192
作者
Scortegagna, M
Ding, K
Zhang, QY
Oktay, Y
Bennett, MJ
Bennett, M
Shelton, JM
Richardson, JA
Moe, O
Garcia, JA
机构
[1] Univ Texas, SW Med Ctr, Dept Internal Med, Dallas, TX 75390 USA
[2] Univ Texas, SW Med Ctr, Dept Pathol, Dallas, TX 75390 USA
[3] Univ Texas, SW Med Ctr, Dept Mol Biol, Dallas, TX 75390 USA
[4] Childrens Med Ctr, Dept Pathol, Dallas, TX 75235 USA
关键词
D O I
10.1182/blood-2004-05-1695
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Erythropoiesis in the adult mammal depends critically on erythropoietin, an inducible cytokine with pluripotent effects. Erythropoietin gene expression increases under conditions associated with lowered oxygen content such as anemia and hypoxia. HIF-1 alpha, the founding member of the hypoxia-inducible factor (HIF) alpha class, was identified by its ability to bind and activate the hypoxia-responsive enhancer in the erythropoietin regulatory region in vitro. The existence of multiple HIF alpha members raises the question of which HIF alpha member or members regulates erythropoietin expression in vivo. We previously reported that mice lacking wild-type HIF-2 alpha, encoded by the EPAS1 gene, exhibit pancytopenia. In this study, we have characterized the etiology of this hematopoietic phenotype. Molecular studies of EPAS1-null kidneys reveal dramatically decreased erythropoietin gene expression. EPAS1-null as well as heterozygous mice have impaired renal erythropoietin induction in response to hypoxia. Treatment of EPAS1-null mice with exogenous erythropoietin reverses the hematopoletic and other defects. We propose that HIF-2 alpha is an essential regulator of murine erythropoletin production. Impairments in HIF signaling, involving either HIF-1 alpha or HIF-2 alpha, may play a prominent role in conditions involving altered hematopoletic or erythropoietin homeostasis. (c) 2005 by The American Society of Hematology.
引用
收藏
页码:3133 / 3140
页数:8
相关论文
共 67 条
[31]   Erythropoietin - The first 90 years [J].
Lappin, TRJ ;
Rich, IN .
CLINICAL AND LABORATORY HAEMATOLOGY, 1996, 18 (03) :137-145
[32]   Erythropoietin (Epo) and EpoR expression and 2 waves of erythropoiesis [J].
Lee, R ;
Kertesz, N ;
Joseph, SB ;
Jegalian, A ;
Wu, H .
BLOOD, 2001, 98 (05) :1408-1415
[33]   Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis [J].
Lin, CS ;
Lim, SK ;
DAgati, V ;
Costantini, F .
GENES & DEVELOPMENT, 1996, 10 (02) :154-164
[34]   Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT [J].
Maltepe, E ;
Schmidt, JV ;
Baunoch, D ;
Bradfield, CA ;
Simon, MC .
NATURE, 1997, 386 (6623) :403-407
[35]   ERYTHROPOIETIN PRODUCTION IN KIDNEY TUBULAR CELLS [J].
MAXWELL, AP ;
LAPPIN, TRJ ;
JOHNSTON, CF ;
BRIDGES, JM ;
MCGEOWN, MG .
BRITISH JOURNAL OF HAEMATOLOGY, 1990, 74 (04) :535-539
[36]   HIF-1: An oxygen response system with special relevance to the kidney [J].
Maxwell, P .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2003, 14 (11) :2712-2722
[37]   IDENTIFICATION OF THE RENAL ERYTHROPOIETIN-PRODUCING CELLS USING TRANSGENIC MICE [J].
MAXWELL, PH ;
OSMOND, MK ;
PUGH, CW ;
HERYET, A ;
NICHOLLS, LG ;
TAN, CC ;
DOE, BG ;
FERGUSON, DJP ;
JOHNSON, MH ;
RATCLIFFE, PJ .
KIDNEY INTERNATIONAL, 1993, 44 (05) :1149-1162
[38]   HLF/HIF-2α is a key factor in retinopathy of prematurity in association with erythropoietin [J].
Morita, M ;
Ohneda, O ;
Yamashita, T ;
Takahashi, S ;
Suzuki, N ;
Nakajima, O ;
Kawauchi, S ;
Ema, M ;
Shibahara, S ;
Udono, T ;
Tomita, K ;
Tamai, M ;
Sogawa, K ;
Yamamoto, M ;
Fujii-Kuriyama, Y .
EMBO JOURNAL, 2003, 22 (05) :1134-1146
[39]   Erythropoietin is produced by tubular cells of the rat kidney [J].
Mujais S.K. ;
Beru N. ;
Pullman T.N. ;
Goldwasser E. .
Cell Biochemistry and Biophysics, 1999, 30 (1) :153-166
[40]  
NAGASAWA T, 1991, INT J HEMATOL, V54, P159