Missense, nonsense, and neutral mutations define juxtaposed regulatory elements of splicing in cystic fibrosis transmembrane regulator exon 9

被引:114
作者
Pagani, F [1 ]
Buratti, E [1 ]
Stuani, C [1 ]
Baralle, FE [1 ]
机构
[1] Int Ctr Genet Engn & Biotechnol, I-34012 Trieste, Italy
关键词
D O I
10.1074/jbc.M212813200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Exonic sequence variations may induce exon inclusion or exclusion from the mature mRNA by disrupting exonic regulatory elements and/or by affecting a nuclear reading frame scanning mechanism. We have carried out a systematic study of the effect on cystic fibrosis transmembrane regulator exon 9 splicing of natural and site-directed sequence mutations. We have observed that changes in the splicing pattern were not related to the creation of premature termination codons, a fact that indicates the lack of a significant nuclear check of the reading frame in this system. In addition, the splice pattern could not be predicted by available Ser/Arg protein matrices score analysis. An extensive site-directed mutagenesis of the 3' portion of the exon has identified two juxtaposed splicing enhancer and silencer elements. The study of double mutants at these regulatory elements showed a complex regulatory activity. For example, one natural mutation (146C) enhances exon inclusion and overrides all of the downstream silencing mutations except for a C to G transversion (155G). This unusual effect is explained by the creation of a specific binding site for the inhibitory splicing factor hnRNPH. In fact, on the double mutant 146C-155G, the silencing effect is dominant. These results indicate a strict dependence between the two juxtaposed enhancer and silencer sequences and show that many point mutations in these elements cause changes in splicing efficiency by different mechanisms.
引用
收藏
页码:26580 / 26588
页数:9
相关论文
共 49 条
[1]   Nonsense mutations inhibit RNA splicing in a cell-free system: Recognition of mutant codon is independent of protein synthesis [J].
Aoufouchi, S ;
Yelamos, J ;
Milstein, C .
CELL, 1996, 85 (03) :415-422
[2]   Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping [J].
Buratti, E ;
Dörk, T ;
Zuccato, E ;
Pagani, F ;
Romano, M ;
Baralle, FE .
EMBO JOURNAL, 2001, 20 (07) :1774-1784
[3]   REGULATION OF ALTERNATIVE SPLICING IN-VIVO BY OVEREXPRESSION OF ANTAGONISTIC SPLICING FACTORS [J].
CACERES, JF ;
STAMM, S ;
HELFMAN, DM ;
KRAINER, AR .
SCIENCE, 1994, 265 (5179) :1706-1709
[4]   A nonsense mutation in the fibrillin-1 gene of a Marfan syndrome patient induces NMD and disrupts an exonic splicing enhancer [J].
Caputi, M ;
Kendzior, RJ ;
Beemon, KL .
GENES & DEVELOPMENT, 2002, 16 (14) :1754-1759
[5]   A NOVEL BIPARTITE SPLICING ENHANCER MODULATES THE DIFFERENTIAL PROCESSING OF THE HUMAN FIBRONECTIN EDA EXON [J].
CAPUTI, M ;
CASARI, G ;
GUENZI, S ;
TAGLIABUE, R ;
SIDOLI, A ;
MELO, CA ;
BARALLE, FE .
NUCLEIC ACIDS RESEARCH, 1994, 22 (06) :1018-1022
[6]   Determination of the RNA binding specificity of the heterogeneous nuclear ribonucleoprotein (hnRNP) H/H′/F/2H9 family [J].
Caputi, M ;
Zahler, AM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (47) :43850-43859
[7]   Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1 [J].
Cartegni, L ;
Krainer, AR .
NATURE GENETICS, 2002, 30 (04) :377-384
[8]   A REGULATORY MECHANISM THAT DETECTS PREMATURE NONSENSE CODONS IN T-CELL RECEPTOR TRANSCRIPTS IN-VIVO IS REVERSED BY PROTEIN-SYNTHESIS INHIBITORS IN-VITRO [J].
CARTER, MS ;
DOSKOW, J ;
MORRIS, P ;
LI, SL ;
NHIM, RP ;
SANDSTEDT, S ;
WILKINSON, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (48) :28995-29003
[9]   Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat β-tropomyosin gene [J].
Chen, CD ;
Kobayashi, R ;
Helfman, DM .
GENES & DEVELOPMENT, 1999, 13 (05) :593-606
[10]   The regulation of splice-site selection, and its role in human disease [J].
Cooper, TA ;
Mattox, W .
AMERICAN JOURNAL OF HUMAN GENETICS, 1997, 61 (02) :259-266