An improved spectral large sieve inequality for SL3(Z)

被引:2
作者
Young, Matthew P. [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
automorphic forms; large sieve inequality; Fourier coefficients; functional equation; Rankin-Selb erg L-function; MEAN-VALUE; FORMS;
D O I
10.4064/aa211008-29-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:151 / 164
页数:14
相关论文
共 16 条
[11]   Upper Bounds on L-Functions at the Edge of the Critical Strip [J].
Li, Xiannan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (04) :727-755
[12]  
LUO WZ, 1995, ACTA ARITH, V70, P377
[13]  
Montgomery H. L., 1971, Topics in Multiplicative Number Theory, V227
[14]   An unconditional GLn large sieve [J].
Thorner, Jesse ;
Zaman, Asif .
ADVANCES IN MATHEMATICS, 2021, 378
[15]   Large sieve inequalities for GL(n)-forms in the conductor aspect [J].
Venkatesh, A .
ADVANCES IN MATHEMATICS, 2006, 200 (02) :336-356
[16]   Bilinear Forms with GL3 Kloosterman Sums and the Spectral Large Sieve [J].
Young, Matthew P. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (21) :6453-6492