An improved spectral large sieve inequality for SL3(Z)

被引:2
作者
Young, Matthew P. [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
automorphic forms; large sieve inequality; Fourier coefficients; functional equation; Rankin-Selb erg L-function; MEAN-VALUE; FORMS;
D O I
10.4064/aa211008-29-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:151 / 164
页数:14
相关论文
共 16 条
[1]  
[Anonymous], 2004, Amer. Math. Soc., Colloq. Publ.
[2]   Global decomposition of GL(3) Kloosterman sums and the spectral large sieve [J].
Blomer, Valentin ;
Buttcane, Jack .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 757 :51-88
[3]   Applications of the Kuznetsov formula on GL(3) [J].
Blomer, Valentin .
INVENTIONES MATHEMATICAE, 2013, 194 (03) :673-729
[4]  
Duke W, 2000, INVENT MATH, V139, P1
[5]  
Dunn A, ARXIV210907463 2021
[6]  
Goldfeld D, 2006, Cambridge Studies in Advanced Mathematics, 99, V99
[7]   Kummer's conjecture for cubic Gauss sums [J].
Heath-Brown, DR .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 120 (1) :97-124
[8]  
IWANIEC H, 1992, J REINE ANGEW MATH, V428, P139
[9]   Uniform bound for Hecke L-functions [J].
Jutila, Matti ;
Motohashi, Yoichi .
ACTA MATHEMATICA, 2005, 195 (01) :61-115
[10]   SPECTRAL ASYMPTOTICS FOR ARITHMETIC QUOTIENTS OF SL(n, R)/SO(n) [J].
Lapid, Erez ;
Mueller, Werner .
DUKE MATHEMATICAL JOURNAL, 2009, 149 (01) :117-155