Piezoelectricity in planar boron nitride via a geometric phase

被引:47
作者
Droth, Matthias [1 ]
Burkard, Guido [1 ]
Pereira, Vitor M. [2 ,3 ]
机构
[1] Univ Konstanz, Dept Phys, D-78457 Constance, Germany
[2] Natl Univ Singapore, Ctr Adv Mat 2D, 2 Sci Dr 3, Singapore 117542, Singapore
[3] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore
基金
新加坡国家研究基金会;
关键词
ELECTRONIC-STRUCTURE; LAYER MOS2; GRAPHENE; POLARIZATION; OXIDE;
D O I
10.1103/PhysRevB.94.075404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Due to their low surface mass density, two-dimensional materials with a strong piezoelectric response are interesting for nanoelectromechanical systems with high force sensitivity. Unlike graphene, the two sublattices in a monolayer of hexagonal boron nitride (hBN) are occupied by different elements, which breaks inversion symmetry and allows for piezoelectricity. This has been confirmed with density functional theory calculations of the piezoelectric constant of hBN. Here, we formulate an entirely analytical derivation of the electronic contribution to the piezoelectric response in this system based on the concepts of strain-induced pseudomagnetic vector potential and the modern theory of polarization that relates the polar moment to the Berry curvature. Our findings agree with the symmetry restrictions expected for the hBN lattice and reproduce well the magnitude of the piezoelectric effect previously obtained ab initio.
引用
收藏
页数:5
相关论文
共 52 条
[1]  
Allen MT, 2016, NAT PHYS, V12, P128, DOI [10.1038/nphys3534, 10.1038/NPHYS3534]
[2]   Deformation-driven electrical transport of individual boron nitride nanotubes [J].
Bai, Xuedong ;
Golberg, Dmitri ;
Bando, Yoshio ;
Zhi, Chunyi ;
Tang, Chengchun ;
Mitome, Masanori ;
Kurashima, Keiji .
NANO LETTERS, 2007, 7 (03) :632-637
[3]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[4]   ELASTIC AND PIEZOELECTRIC CONSTANTS OF ALPHA-QUARTZ [J].
BECHMANN, R .
PHYSICAL REVIEW, 1958, 110 (05) :1060-1061
[5]   Quantum Dots and Nanoroads of Graphene Embedded in Hexagonal Boron Nitride [J].
Bhowrnick, Somnath ;
Singh, Abhishek K. ;
Yakobson, Boris I. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (20) :9889-9893
[6]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[7]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[10]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209