Interlayer Decoupling in 30° Twisted Bilayer Graphene Quasicrystal

被引:79
|
作者
Deng, Bing [5 ]
Wang, Binbin [4 ]
Li, Ning [1 ,2 ]
Li, Rongtan [6 ]
Wang, Yani [5 ]
Tang, Jilin [5 ]
Fu, Qiang [6 ]
Tian, Zhen [4 ]
Gao, Peng [1 ,2 ,3 ]
Xue, Jiamin [4 ]
Peng, Hailin [5 ]
机构
[1] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Electron Microscopy Lab, Beijing 100871, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[4] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[5] Peking Univ, Beijing Sci & Engn Ctr Nanocarbons, Beijing Natl Lab Mol Sci BNLMS, Ctr Nanochem CNC,Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[6] Chinese Acad Sci, Dalian Inst Chem Phys, Collaborat Innovat Ctr Chem Energy Mat iChEM, State Key Lab Catalysis, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
twisted bilayer graphene; quasicrystal; interlayer coupling; epitaxial growth; electronic structure; KINETICS; DOMAINS; GROWTH;
D O I
10.1021/acsnano.9b07091
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stacking order has a strong influence on the coupling between the two layers of twisted bilayer graphene (BLG), which in turn determines its physical properties. Here, we report the investigation of the interlayer coupling of the epitaxially grown single-crystal 30 degrees-twisted BLG on Cu(111) at the atomic scale. The stacking order and morphology of BLG is controlled by a rationally designed two-step growth process, that is, the thermodynamically controlled nucleation and kinetically controlled growth. The crystal structure of the 30 degrees-twisted bilayer graphene (30 degrees-tBLG) is determined to have quasicrystal-like symmetry. The electronic properties and interlayer coupling of the 30 degrees-tBLG are investigated using scanning tunneling microscopy and spectroscopy. The energy-dependent local density of states with in situ electrostatic doping shows that the electronic states in two graphene layers are decoupled near the Dirac point. A linear dispersion originated from the constituent graphene monolayers is discovered with doubled degeneracy. This study contributes to controlled growth of twist-angle-defined BLG and provides insights on the electronic properties and interlayer coupling in this intriguing system.
引用
收藏
页码:1656 / 1664
页数:9
相关论文
共 50 条
  • [1] Experimental evidence for interlayer decoupling distance of twisted bilayer graphene
    Jeon, Jun Woo
    Kim, Hyeonbeom
    Kim, Hyuntae
    Choi, Soobong
    Kim, Byung Hoon
    AIP ADVANCES, 2018, 8 (07):
  • [2] Interlayer hybridization in graphene quasicrystal and other bilayer graphene systems
    Yu, Guodong
    Wang, Yunhua
    Katsnelson, Mikhail, I
    Lin, Hai-Qing
    Yuan, Shengjun
    PHYSICAL REVIEW B, 2022, 105 (12)
  • [3] Quasicrystalline 30° twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling
    Yao, Wei
    Wang, Eryin
    Bao, Changhua
    Zhang, Yiou
    Zhang, Kenan
    Bao, Kejie
    Chan, Chun Kai
    Chen, Chaoyu
    Avila, Jose
    Asensio, Maria C.
    Zhu, Junyi
    Zhou, Shuyun
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (27) : 6928 - 6933
  • [4] Breakdown of the Interlayer Coherence in Twisted Bilayer Graphene
    Kim, Youngwook
    Yun, Hoyeol
    Nam, Seung-Geol
    Son, Minhyeok
    Lee, Dong Su
    Kim, Dong Chul
    Seo, S.
    Choi, Hee Cheul
    Lee, Hu-Jong
    Lee, Sang Wook
    Kim, Jun Sung
    PHYSICAL REVIEW LETTERS, 2013, 110 (09)
  • [5] Commensuration and interlayer coherence in twisted bilayer graphene
    Mele, E. J.
    PHYSICAL REVIEW B, 2010, 81 (16):
  • [6] Atomic arrangements of quasicrystal bilayer graphene: Interlayer distance expansion
    Fukaya, Yuki
    Zhao, Yuhao
    Kim, Hyun-Woo
    Ahn, Joung Real
    Fukidome, Hirokazu
    Matsuda, Iwao
    PHYSICAL REVIEW B, 2021, 104 (18)
  • [7] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal
    李泽东
    王征飞
    Chinese Physics B, 2020, 29 (10) : 495 - 499
  • [8] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal*
    Li, Zedong
    Wang, Z. F.
    CHINESE PHYSICS B, 2020, 29 (10)
  • [9] Interlayer polarizability in twisted bilayer graphene quantum dots
    Wang, Xian
    Zhang, Li
    Yu, Shengping
    Yang, Mingli
    Jackson, Koblar Alan
    PHYSICAL REVIEW B, 2021, 104 (15)
  • [10] Modeling the structure and interlayer interactions of twisted bilayer graphene
    Belenkov, Maxim E.
    Brzhezinskaya, Maria
    Greshnyakov, Vladimir A.
    Belenkov, Evgeny A.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2022, 30 (01) : 152 - 155