LOCALLY CONFORMALLY FLAT MANIFOLDS WITH CONSTANT SCALAR CURVATURE

被引:0
作者
He, Huiya [1 ]
Li, Haizhong [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Locally conformally flat manifold; constant scalar curvature; Ricci curvature; RIEMANNIAN-MANIFOLDS;
D O I
10.1090/proc/14148
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M-n, g) be an n-dimensional (n >= 4) compact locally conformally flat Riemannian manifold with constant scalar curvature and constant squared norm of Ricci curvature. Applying the moving frame method, we prove that such a Riemannian manifold does not exist if its Ricci curvature tensor has three distinct eigenvalues.
引用
收藏
页码:5367 / 5378
页数:12
相关论文
共 17 条
[1]  
[Anonymous], 1968, Ann. Scuola Norm. Sup. Pisa (3)
[2]  
Aubin Thierry, 1982, FUNDAMENTAL PRINCIPL, V252
[3]   ON CLOSED HYPERSURFACES OF CONSTANT SCALAR CURVATURES AND MEAN CURVATURES IN S(N+1) [J].
CHANG, SP .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 165 (01) :67-76
[4]  
Cheng Qing-Ming, 2001, JAPAN J MATH, V27, P387
[5]   Conformally flat 3-manifolds with constant scalar curvature [J].
Cheng, QM ;
Ishikawa, S ;
Shiohama, K .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1999, 51 (01) :209-226
[6]   Compact locally conformally flat Riemannian manifolds [J].
Cheng, QM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :459-465
[7]   HYPERSURFACES WITH CONSTANT SCALAR CURVATURE [J].
CHENG, SY ;
YAU, ST .
MATHEMATISCHE ANNALEN, 1977, 225 (03) :195-204
[9]   Schouten curvature functions on locally conformally flat Riemannian manifolds [J].
Hu, Zejun ;
Li, Haizhong ;
Simon, Udo .
JOURNAL OF GEOMETRY, 2008, 88 (1-2) :75-100
[10]  
Ivanov S., ARXIVDGGA9702009V1