An all-aqueous redox flow battery with unprecedented energy density

被引:171
作者
Zhang, Jing [1 ]
Jiang, Gaopeng [1 ]
Xu, Pan [1 ]
Kashkooli, Ali Ghorbani [1 ]
Mousavi, Mahboubeh [1 ]
Yu, Aiping [1 ]
Chen, Zhongwei [1 ]
机构
[1] Univ Waterloo, Waterloo Inst Sustainable Energy, Waterloo Inst Nanotechnol, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
POROUS MEMBRANES; METAL-FREE; ELECTROLYTE; STORAGE; IODIDE; POLYIODIDE; ZINC;
D O I
10.1039/c8ee00686e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Redox flow batteries are of particular interest because of the flexible power and energy storage originating from their unique architecture, but their low energy density has inhibited their widespread dissemination. In this work, a novel strategy of tuning the pH of the electrolyte environment is put forward to enhance the battery voltage, and eventually achieve the goal of high energy density for all-aqueous redox flow batteries. With this strategy, a hybrid alkaline zinc-iodine redox flow battery has been designed with a 0.47 V potential enhancement by switching the anolyte from acidic to basic, thus inspiring an experimental high energy density of 330.5 W h L-1. This is an unprecedented record to date for an all-aqueous redox flow battery.
引用
收藏
页码:2010 / 2015
页数:6
相关论文
共 46 条
  • [1] A Neutral pH Aqueous Organic-Organometallic Redox Flow Battery with Extremely High Capacity Retention
    Beh, Eugene S.
    De Porcellinis, Diana
    Gracia, Rebecca L.
    Xia, Kay T.
    Gordon, Roy G.
    Aziz, Michael J.
    [J]. ACS ENERGY LETTERS, 2017, 2 (03): : 639 - 644
  • [2] Revised Pourbaix diagrams for zinc at 25-300 degrees C
    Beverskog, B
    Puigdomenech, I
    [J]. CORROSION SCIENCE, 1997, 39 (01) : 107 - 114
  • [3] Membrane-less hydrogen bromine flow battery
    Braff, William A.
    Bazant, Martin Z.
    Buie, Cullen R.
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [4] An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery
    Brushett, Fikile R.
    Vaughey, John T.
    Jansen, Andrew N.
    [J]. ADVANCED ENERGY MATERIALS, 2012, 2 (11) : 1390 - 1396
  • [5] Cano Z. P., 2018, NAT COMMUN, P279
  • [6] Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries
    Chen, Hongning
    Zou, Qingli
    Liang, Zhuojian
    Liu, Hao
    Li, Quan
    Lu, Yi-Chun
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [7] High-voltage aqueous battery approaching 3 V using an acidic-alkaline double electrolyte
    Chen, Long
    Guo, Ziyang
    Xia, Yongyao
    Wang, Yonggang
    [J]. CHEMICAL COMMUNICATIONS, 2013, 49 (22) : 2204 - 2206
  • [8] Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
    Darling, Robert M.
    Gallagher, Kevin G.
    Kowalski, Jeffrey A.
    Ha, Seungbum
    Brushett, Fikile R.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (11) : 3459 - 3477
  • [9] POTENTIAL-PH DIAGRAM OF ZINC AND ITS APPLICATIONS TO THE STUDY OF ZINC CORROSION
    DELAHAY, P
    POURBAIX, M
    VANRYSSELBERGHE, P
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1951, 98 (03) : 101 - 105
  • [10] A high-performance all-metallocene-based, non-aqueous redox flow battery
    Ding, Yu
    Zhao, Yu
    Li, Yutao
    Goodenough, John B.
    Yu, Guihua
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (02) : 491 - 497