A Crank-Nicolson Petrov-Galerkin method with quadrature for semi-linear parabolic problems

被引:5
|
作者
Bialecki, B
Ganesh, M [1 ]
Mustapha, K
机构
[1] Colorado Sch Mines, Dept Math & Comp Sci, Golden, CO 80401 USA
[2] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
关键词
parabolic initial-boundary value problems; Petrov-Galerkin; Crank-Nicolson; splines; Gauss quadrature;
D O I
10.1002/num.20068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and analyze an application of a fully discrete C-2 spline quadrature Petrov-Galerkin method for spatial discretization of semi-linear parabolic initial-boundary value problems on rectangular domains. We prove second order in time and optimal order H-1 norm convergence in space for the extrapolated Crank-Nicolson quadrature Petrov-Galerkin scheme. We demonstrate numerically both L-2 and H-1 norm optimal order convergence of the scheme even if the nonlinear source term is not smooth. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:918 / 937
页数:20
相关论文
共 50 条