The disappearance and return of nanoparticles upon low energy ion irradiation

被引:8
作者
Choupanian, Shiva [1 ]
Nagel, Alessandro [2 ]
Moeller, Wolfhard [3 ]
Pacholski, Claudia [2 ]
Ronning, Carsten [1 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Solid State Phys, Max Wien Pl 1, D-07743 Jena, Germany
[2] Univ Potsdam, Inst Chem, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, Bautzner Landstr 400, D-01328 Dresden, Germany
关键词
sputtering; phase sepereation; ion-nanoparticle interaction; ion beam mixing; Ostwald ripening; TRI3DYN; Ag nanoparticles; THERMODYNAMIC PROPERTIES; BEAM MODIFICATION; NANOSTRUCTURES; SILVER; SIMULATION;
D O I
10.1088/1361-6528/ac2dc3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ion irradiation of bulk and thin film materials is tightly connected to well described effects such as sputtering or/and ion beam mixing. However, when a nanoparticle is ion irradiated and the ion range is comparable to the nanoparticle size, these effects are to be reconsidered essentially. This study investigates the morphology changes of silver nanoparticles on top of silicon substrates, being irradiated with Ga+ ions in an energy range from 1 to 30 keV. The hemispherical shaped nanoparticles become conical due to an enhanced and curvature-dependent sputtering, before they finally disappear. The sputter yield and morphology changes can be well described by 3D Monte Carlo TRI3DYN simulations. However, the combination of sputtering, ion beam mixing, ion beam induced diffusion, and Ostwald ripening at ion energies lower than 8 keV results in the reappearance of new particles. These newly formed nanoparticles appear in various structures depending on the material and ion energy.
引用
收藏
页数:7
相关论文
共 40 条
[1]  
[Anonymous], 2010, NUCL INSTRUM METH B, DOI DOI 10.1016/J.NIMB.2010.02.091
[2]   Ion beam irradiation of nanostructures - A 3D Monte Carlo simulation code [J].
Borschel, C. ;
Ronning, C. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2011, 269 (19) :2133-2138
[3]  
Borschel C, 2016, SPRINGER SER SURF SC, V61, P475, DOI 10.1007/978-3-319-33561-2_12
[4]   Optimization of electron beam-deposited silver nanoparticles on zinc oxide for maximally surface enhanced Raman spectroscopy [J].
Cook, Andrew L. ;
Haycook, Christopher P. ;
Locke, Andrea K. ;
Mu, Richard R. ;
Giorgio, Todd D. .
NANOSCALE ADVANCES, 2021, 3 (02) :407-417
[5]   Ion beam shaping of Au nanoparticles prepared by micellar technique [J].
Dawi, E. A. ;
Klimmer, A. ;
Rizza, G. ;
Ziemann, P. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2010, 268 (05) :481-484
[6]   Nucleation of Ga droplets on Si and SiOx surfaces [J].
Detz, H. ;
Kriz, M. ;
MacFarland, D. ;
Lancaster, S. ;
Zederbauer, T. ;
Capriotti, M. ;
Andrews, A. M. ;
Schrenk, W. ;
Strasser, G. .
NANOTECHNOLOGY, 2015, 26 (31)
[7]   Resonant nanostructures for highly confined and ultra-sensitive surface phonon-polaritons [J].
Dubrovkin, Alexander M. ;
Qiang, Bo ;
Salim, Teddy ;
Nam, Donguk ;
Zheludev, Nikolay, I ;
Wang, Qi Jie .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]   Sputtering yields [J].
Eckstein, W. .
VACUUM, 2008, 82 (09) :930-934
[9]   Optical properties of nanostructured materials: a review [J].
Flory, Francois ;
Escoubas, Ludovic ;
Berginc, Gerard .
JOURNAL OF NANOPHOTONICS, 2011, 5
[10]   Enhanced Sputtering Yields from Single-Ion Impacts on Gold Nanorods [J].
Greaves, G. ;
Hinks, J. A. ;
Busby, P. ;
Mellors, N. J. ;
Ilinov, A. ;
Kuronen, A. ;
Nordlund, K. ;
Donnelly, S. E. .
PHYSICAL REVIEW LETTERS, 2013, 111 (06)