Os/Si nanocomposites as excellent hydrogen evolution electrocatalysts with thermodynamically more favorable hydrogen adsorption free energy than platinum

被引:44
作者
Cheng, Yafei [1 ]
Fan, Xing [1 ]
Liao, Fan [1 ]
Lu, Shunkai [1 ]
Li, Youyong [1 ]
Liu, Liangbin [1 ]
Li, Yanqing [1 ]
Lin, Haiping [1 ]
Shao, Mingwang [1 ]
Lee, Shuit-Tong [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen evolution reaction; Os nanoparticles; Si nanowires; Electrocatalysts; Adsorption free energy; WAVE BASIS-SET; SILICON NANOWIRES; CATALYSTS; METALS;
D O I
10.1016/j.nanoen.2017.07.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of highly efficient electrocatalysts for hydrogen evolution reaction is a fundamental undertaking of the hydrogen economy. Herein, we investigated the electrocatalytic performance of M/Si (M = Os, Rh, Pt, Pd, Re, Ru, Au or Ag) nanocomposites for hydrogen evolution reaction. The results show that Os/Si nanocomposites exhibit the best catalytic efficiency with a negligible onset overpotential (-25 mV), a small Tafel slope of -24 mV dec(-1) and remarkable long-term stability. Of most importance, at a current density of the typical industrial production (-1000 mA cm(-2)), the energy conversion efficiency of the Os/Si nanocomposite is 29.3% higher than that of the commercial 40 wt% Pt/C. The density functional calculations reveal that such outstanding catalytic activity of the Os/Si catalyst arises from the thermodynamically more favorable hydrogen adsorption free energy (Delta G(H*) = -0.03 eV) at the osmium/silicon interfaces than that on platinum (Delta G(H*) = -0.09 eV) or osmium (Delta G(H*) = -0.26 eV).
引用
收藏
页码:284 / 290
页数:7
相关论文
共 24 条
  • [1] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [2] Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst
    Chen, Sheng
    Duan, Jingjing
    Tang, Youhong
    Jin, Bo
    Qiao, Shi Zhang
    [J]. NANO ENERGY, 2015, 11 : 11 - 18
  • [3] Platinum single-atom and cluster catalysis of the hydrogen evolution reaction
    Cheng, Niancai
    Stambula, Samantha
    Wang, Da
    Banis, Mohammad Norouzi
    Liu, Jian
    Riese, Adam
    Xiao, Biwei
    Li, Ruying
    Sham, Tsun-Kong
    Liu, Li-Min
    Botton, Gianluigi A.
    Sun, Xueliang
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [4] A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s-1 for H2 Production
    Helm, Monte L.
    Stewart, Michael P.
    Bullock, R. Morris
    DuBois, M. Rakowski
    DuBois, Daniel L.
    [J]. SCIENCE, 2011, 333 (6044) : 863 - 866
  • [5] Synthesis of layer-deposited silicon nanowires, modification with Pd nanoparticles, and their excellent catalytic activity and stability in the reduction of methylene blue
    Hu, Hui
    Shao, Mingwang
    Zhang, Wu
    Lu, Lei
    Wang, Hong
    Wang, Sheng
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (08) : 3467 - 3470
  • [6] Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution
    Huang, Zhen-Feng
    Song, Jiajia
    Pan, Lun
    Wang, Ziming
    Zhang, Xueqiang
    Zou, Ji-Jun
    Mi, Wenbo
    Zhang, Xiangwen
    Wang, Li
    [J]. NANO ENERGY, 2015, 12 : 646 - 656
  • [7] Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts
    Jaramillo, Thomas F.
    Jorgensen, Kristina P.
    Bonde, Jacob
    Nielsen, Jane H.
    Horch, Sebastian
    Chorkendorff, Ib
    [J]. SCIENCE, 2007, 317 (5834) : 100 - 102
  • [8] Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. PHYSICAL REVIEW B, 1996, 54 (16): : 11169 - 11186
  • [9] Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 1996, 6 (01) : 15 - 50
  • [10] Lasia A., 2014, SPRINGER SCI BUSINES, P159