On the L2-metric of vortex moduli spaces

被引:32
作者
Baptista, J. M. [1 ,2 ]
机构
[1] Univ Amsterdam, Inst Theoret Phys, ITF, NL-1090 GL Amsterdam, Netherlands
[2] Inst Super Tecn, Dept Math, CAMGSD, P-1049001 Lisbon, Portugal
关键词
Vortex equations; Moduli spaces; Gauged sigma-models; VORTICES; EQUATIONS;
D O I
10.1016/j.nuclphysb.2010.11.005
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We derive general expressions for the Kahler form of the L-2-metric in terms of standard 2-forms on vortex moduli spaces. In the case of abelian vortices in gauged linear sigma-models, this allows us to compute explicitly the Uhler class of the L-2-metric. As an application we compute the total volume of the moduli space of abelian semi-local vortices. In the strong coupling limit, this then leads to conjectural formulae for the volume of the space of holomorphic maps from a compact Riemann surface to projective space. Finally we show that the localization results of Samols in the abelian Higgs model extend to more general models. These include linear non-abelian vortices and vortices in gauged tone sigma-models. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:308 / 333
页数:26
相关论文
共 38 条
[1]  
[Anonymous], 2002, Cambridge Stud. in Adv. Math., DOI DOI 10.1017/CBO9780511615344
[2]  
[Anonymous], 1991, Heat Kernels and Dirac Operators
[3]   Nonabelian superconductors:: vortices and confinement in N=2 SQCD [J].
Auzzi, R ;
Bolognesi, S ;
Evslin, J ;
Konishi, K ;
Yung, A .
NUCLEAR PHYSICS B, 2003, 673 (1-2) :187-216
[4]  
Baptista JM, 2005, ADV THEOR MATH PHYS, V9, P1007
[5]   Non-Abelian Vortices on Compact Riemann Surfaces [J].
Baptista, J. M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (03) :799-812
[6]  
Baptista J. M., 2008, JHEP, V0802
[7]   Vortex equations in abelian gauged σ-models [J].
Baptista, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 261 (01) :161-194
[8]   Some special Kahler metrics on SL(2, C) and their holomorphic quantization [J].
Baptista, JM .
JOURNAL OF GEOMETRY AND PHYSICS, 2004, 50 (1-4) :1-27
[9]   Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians [J].
Bertram, A ;
Daskalopoulos, G ;
Wentworth, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :529-571
[10]   Coupled vortex equations and moduli: deformation theoretic approach and Kahler geometry [J].
Biswas, Indranil ;
Schumacher, Georg .
MATHEMATISCHE ANNALEN, 2009, 343 (04) :825-851