Finding the phase diagram of strongly correlated disordered bosons using quantum quenches

被引:2
作者
Villa, L. [1 ]
Thomson, S. J. [1 ,2 ]
Sanchez-Palencia, L. [1 ]
机构
[1] IP Paris, Ecole Polytech, CNRS, CPHT, F-91128 Palaiseau, France
[2] PSL Res Univ, Coll France, CNRS, JEIP,USR 3573, 11 Pl Marcelin Berthelot, F-75321 Paris 05, France
关键词
BOSE-HUBBARD MODEL; MATRIX RENORMALIZATION-GROUP; MANY-BODY LOCALIZATION; ANDERSON LOCALIZATION; INSULATOR TRANSITION; GLASS TRANSITION; FERMIONS; SYMMETRY; PHYSICS; ATOMS;
D O I
10.1103/PhysRevA.104.023323
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The question of how the low-energy properties of disordered quantum systems may be connected to exotic localization phenomena at high energy is a key open question in the context of quantum glasses and many-body localization. In the preceding Letter [L. Villa, S. J. Thomson, and L. Sanchez-Palencia, preceding Letter, Phys. Rev. A 104, L021301 (2021)] we have shown that key features of the excitation spectrum of a disordered system can be efficiently probed from out-of-equilibrium dynamics following a quantum quench, providing distinctive signatures of the various phases. Here we extend this work by providing a more-in-depth study of the behavior of the quench spectral functions associated with different observables and investigating an extended parameter regime. We provide a detailed introduction to quench spectroscopy for disordered systems and show how spectral properties can be probed using both local operators and two-point correlation functions. We benchmark the technique using the one-dimensional Bose-Hubbard model in the presence of a random external potential, focusing on the low-lying excitations, and demonstrate that quench spectroscopy can distinguish the Mott insulator, superfluid, and Bose glass phases. We then explicitly reconstruct the zero-temperature phase diagram of the disordered Bose-Hubbard at fixed filling using two independent methods, experimentally accessible via both time-of-flight imaging and quantum gas microscopy, respectively, and demonstrate that quench spectroscopy can give valuable insights into the distribution of rare regions within disordered systems.
引用
收藏
页数:17
相关论文
共 129 条
[11]   Feedback-enhanced algorithm for aberration correction of holographic atom traps [J].
Bruce, Graham D. ;
Johnson, Matthew Y. H. ;
Cormack, Edward ;
Richards, David A. W. ;
Mayoh, James ;
Cassettari, Donatella .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2015, 48 (11)
[12]   Mean-field phase diagram of cold lattice bosons in disordered potentials [J].
Buonsante, P. ;
Penna, V. ;
Vezzani, A. ;
Blakie, P. B. .
PHYSICAL REVIEW A, 2007, 76 (01)
[13]   Imaging the Mott insulator shells by using atomic clock shifts [J].
Campbell, Gretchen K. ;
Mun, Jongchul ;
Boyd, Micah ;
Medley, Patrick ;
Leanhardt, Aaron E. ;
Marcassa, Luis G. ;
Pritchard, David E. ;
Ketterle, Wolfgang .
SCIENCE, 2006, 313 (5787) :649-652
[14]   Differences between the Tonks regimes in the continuum and on the lattice [J].
Cazalilla, MA .
PHYSICAL REVIEW A, 2004, 70 (04) :041604-1
[15]   One-dimensional optical lattices and impenetrable bosons [J].
Cazalilla, MA .
PHYSICAL REVIEW A, 2003, 67 (05) :4
[16]   Time dynamics with matrix product states: Many-body localization transition of large systems revisited [J].
Chanda, Titas ;
Sierant, Piotr ;
Zakrzewski, Jakub .
PHYSICAL REVIEW B, 2020, 101 (03)
[17]   QUANTUM SIMULATION Exploring the many-body localization transition in two dimensions [J].
Choi, Jae-yoon ;
Hild, Sebastian ;
Zeiher, Johannes ;
Schauss, Peter ;
Rubio-Abadal, Antonio ;
Yefsah, Tarik ;
Khemani, Vedika ;
Huse, David A. ;
Bloch, Immanuel ;
Gross, Christian .
SCIENCE, 2016, 352 (6293) :1547-1552
[18]   Lattice modulation spectroscopy of one-dimensional quantum gases: Universal scaling of the absorbed energy [J].
Citro, R. ;
Demler, E. ;
Giamarchi, T. ;
Knap, M. ;
Orignac, E. .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)
[19]   Experimental study of the transport of coherent interacting matter-waves in a 1D random potential induced by laser speckle [J].
Clement, D. ;
Varon, A. F. ;
Retter, J. A. ;
Sanchez-Palencia, L. ;
Aspect, A. ;
Bouyer, P. .
NEW JOURNAL OF PHYSICS, 2006, 8
[20]   Bragg Spectroscopy of Strongly Correlated Bosons in Optical Lattices [J].
Clement, D. ;
Fabbri, N. ;
Fallani, L. ;
Fort, C. ;
Inguscio, M. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2010, 158 (1-2) :5-15