Optimized Convolutional Neural Network Models for Skin Lesion Classification

被引:27
作者
Villa-Pulgarin, Juan Pablo [1 ]
Ruales-Torres, Anderson Alberto [1 ,2 ]
Arias-Garzon, Daniel [1 ]
Bravo-Ortiz, Mario Alejandro [1 ]
Arteaga-Arteaga, Harold Brayan [1 ]
Mora-Rubio, Alejandro [1 ]
Alzate-Grisales, Jesus Alejandro [1 ]
Mercado-Ruiz, Esteban [1 ]
Hassaballah, M. [3 ]
Orozco-Arias, Simon [4 ,5 ]
Cardona-Morales, Oscar [1 ]
Tabares-Soto, Reinel [1 ]
机构
[1] Univ Autonoma Manizales, Dept Elect & Automat, Manizales 170001, Colombia
[2] Corporac Univ Autonoma Narino, SEDMATEC, Pasto 520002, Colombia
[3] South Valley Univ, Fac Comp & Informat, Dept Comp Sci, Qena 83523, Egypt
[4] Univ Autonoma Manizales, Dept Comp Sci, Manizales 170001, Colombia
[5] Univ Caldas, Dept Syst & Informat, Manizales 170001, Colombia
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2022年 / 70卷 / 02期
关键词
Deep learning; skin lesion; convolutional neural network; data augmentation; transfer learning; IMAGE CLASSIFICATION; DEEP; CANCER; DISEASE;
D O I
10.32604/cmc.2022.019529
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Skin cancer is one of the most severe diseases, and medical imaging is among the main tools for cancer diagnosis. The images provide information on the evolutionary stage, size, and location of tumor lesions. This paper focuses on the classification of skin lesion images considering a framework of four experiments to analyze the classification performance of Convolutional Neural Networks (CNNs) in distinguishing different skin lesions. The CNNs are based on transfer learning, taking advantage of ImageNet weights. Accordingly, in each experiment, different workflow stages are tested, including data augmentation and fine-tuning optimization. Three CNN models based on DenseNet-201, Inception-ResNet-V2, and Inception-V3 are proposed and compared using the HAM10000 dataset. The results obtained by the three models demonstrate accuracies of 98%, 97%, and 96%, respectively. Finally, the best model is tested on the ISIC 2019 dataset showing an accuracy of 93%. The proposed methodology using CNN represents a helpful tool to accurately diagnose skin cancer disease.
引用
收藏
页码:2131 / 2148
页数:18
相关论文
共 42 条
[1]   Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art [J].
Adegun, Adekanmi ;
Viriri, Serestina .
ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (02) :811-841
[2]   Skin Lesion Classification With Deep CNN Ensembles [J].
Ahmed, Sara Atito Ali ;
Yanikoglu, Berrin ;
Goksu, Ozgu ;
Aptoula, Erchan .
2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
[3]   Segmented and Non-Segmented Skin Lesions Classification Using Transfer Learning and Adaptive Moment Learning Rate Technique Using Pretrained Convolutional Neural Network [J].
Alqudaht, Ali Mohammad ;
Alquran, Hiam ;
Abu Qasmieh, Isam .
JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING, 2019, 42 :67-78
[4]   DEEP CONVOLUTIONAL NEURAL NETWORK WITH TENSORFLOW AND KERAS TO CLASSIFY SKIN CANCER IMAGES [J].
Benbrahim, Houssam ;
Hachimi, Hanaa ;
Amine, Aouatif .
SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2020, 21 (03) :379-389
[5]  
Bhatia Y., 2019, 2019 12 INT C CONT C, P1, DOI DOI 10.1109/IC3.2019.8844921
[6]  
Bhavya S., 2018, Int J Eng Technol, V7, P717
[7]  
BRAVO-ORTÍZ MARIO ALEJANDRO, 2021, Rev.EIA.Esc.Ing.Antioq, V18, P100, DOI 10.24050/reia.v18i35.1462
[8]  
Codella N, 2019, SKIN LESION ANAL MEL, P1
[9]   Accuracy of Computer-Aided Diagnosis of Melanoma A Meta-analysis [J].
Dick, Vincent ;
Sinz, Christoph ;
Mittlboeck, Martina ;
Kittler, Harald ;
Tschandl, Philipp .
JAMA DERMATOLOGY, 2019, 155 (11) :1291-1299
[10]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+