Evolution and Effectiveness of Loss Functions in Generative Adversarial Networks

被引:0
作者
Saqlain, Ali Syed [1 ]
Fang, Fang [1 ]
Ahmad, Tanvir [1 ]
Wang, Liyun [2 ]
Abidin, Zain-ul [3 ]
机构
[1] North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China
[2] Portland State Univ, Dept Comp Sci, Portland, OR 97207 USA
[3] South West Jiaotong Univ, Sch Informat & Commun Engn, Chengdu 610031, Peoples R China
关键词
loss functions; deep learning; machine learning; unsupervised learning; generative adversarial networks (GANs); image synthesis; IMAGE SUPERRESOLUTION;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Recently, the evolution of Generative Adversarial Networks (GANs) has embarked on a journey of revolutionizing the field of artificial and computational intelligence. To improve the generating ability of GANs, various loss functions are introduced to measure the degree of similarity between the samples generated by the generator and the real data samples, and the effectiveness of the loss functions in improving the generating ability of GANs. In this paper, we present a detailed survey for the loss functions used in GANs, and provide a critical analysis on the pros and cons of these loss functions. First, the basic theory of GANs along with the training mechanism are introduced. Then, the most commonly used loss functions in GANs are introduced and analyzed. Third, the experimental analyses and comparison of these loss functions are presented in different GAN architectures. Finally, several suggestions on choosing suitable loss functions for image synthesis tasks are given.
引用
收藏
页码:45 / 76
页数:32
相关论文
共 50 条
  • [31] PL-GAN: Path Loss Prediction Using Generative Adversarial Networks
    Marey, Ahmed
    Bal, Mustafa
    Ates, Hasan F.
    Gunturk, Bahadir K.
    IEEE ACCESS, 2022, 10 : 90474 - 90480
  • [32] Toward Generative Adversarial Networks for the Industrial Internet of Things
    Qian, Cheng
    Yu, Wei
    Lu, Chao
    Griffith, David
    Golmie, Nada
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (19): : 19147 - 19159
  • [33] Sequential Data Imputation with Evolving Generative Adversarial Networks
    Chakraborty, Haripriya
    Samanta, Priyanka
    Zhao, Liang
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [34] Generative Adversarial Networks in Medical Image augmentation: A review
    Chen, Yizhou
    Yang, Xu-Hua
    Wei, Zihan
    Heidari, Ali Asghar
    Zheng, Nenggan
    Li, Zhicheng
    Chen, Huiling
    Hu, Haigen
    Zhou, Qianwei
    Guan, Qiu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 144
  • [35] Lung image segmentation via generative adversarial networks
    Cai, Jiaxin
    Zhu, Hongfeng
    Liu, Siyu
    Qi, Yang
    Chen, Rongshang
    FRONTIERS IN PHYSIOLOGY, 2024, 15
  • [36] A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
    Gui, Jie
    Sun, Zhenan
    Wen, Yonggang
    Tao, Dacheng
    Ye, Jieping
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 3313 - 3332
  • [37] A Method Using Generative Adversarial Networks for Robustness Optimization
    Feldkamp, Niclas
    Bergmann, Soeren
    Conrad, Florian
    Strassburger, Steffen
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2022, 32 (02):
  • [38] Researches advanced in Generative Adversarial Networks
    Lei, Yilin
    Wang, Haozhen
    Xu, Zhiwen
    2021 3RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING, BIG DATA AND BUSINESS INTELLIGENCE (MLBDBI 2021), 2021, : 196 - 200
  • [39] Generative Adversarial Networks: Introduction and Outlook
    Wang, Kunfeng
    Gou, Chao
    Duan, Yanjie
    Lin, Yilun
    Zheng, Xinhu
    Wang, Fei-Yue
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2017, 4 (04) : 588 - 598
  • [40] Collaborative Learning of Generative Adversarial Networks
    Tsukahara, Takuya
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    Fujiyoshi, Hironobu
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 492 - 499