Evolution and Effectiveness of Loss Functions in Generative Adversarial Networks

被引:0
|
作者
Saqlain, Ali Syed [1 ]
Fang, Fang [1 ]
Ahmad, Tanvir [1 ]
Wang, Liyun [2 ]
Abidin, Zain-ul [3 ]
机构
[1] North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China
[2] Portland State Univ, Dept Comp Sci, Portland, OR 97207 USA
[3] South West Jiaotong Univ, Sch Informat & Commun Engn, Chengdu 610031, Peoples R China
关键词
loss functions; deep learning; machine learning; unsupervised learning; generative adversarial networks (GANs); image synthesis; IMAGE SUPERRESOLUTION;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Recently, the evolution of Generative Adversarial Networks (GANs) has embarked on a journey of revolutionizing the field of artificial and computational intelligence. To improve the generating ability of GANs, various loss functions are introduced to measure the degree of similarity between the samples generated by the generator and the real data samples, and the effectiveness of the loss functions in improving the generating ability of GANs. In this paper, we present a detailed survey for the loss functions used in GANs, and provide a critical analysis on the pros and cons of these loss functions. First, the basic theory of GANs along with the training mechanism are introduced. Then, the most commonly used loss functions in GANs are introduced and analyzed. Third, the experimental analyses and comparison of these loss functions are presented in different GAN architectures. Finally, several suggestions on choosing suitable loss functions for image synthesis tasks are given.
引用
收藏
页码:45 / 76
页数:32
相关论文
共 50 条
  • [1] Loss Functions of Generative Adversarial Networks (GANs): Opportunities and Challenges
    Pan, Zhaoqing
    Yu, Weijie
    Wang, Bosi
    Xie, Haoran
    Sheng, Victor S.
    Lei, Jianjun
    Kwong, Sam
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2020, 4 (04): : 500 - 522
  • [2] Targeted style transfer using cycle consistent generative adversarial networks with quantitative analysis of different loss functions
    Kaur, Mannat
    Satapathy, Swapnil
    Soundrapandiyan, Rajkumar
    Singh, Jivjot
    INTERNATIONAL JOURNAL OF KNOWLEDGE-BASED AND INTELLIGENT ENGINEERING SYSTEMS, 2018, 22 (04) : 239 - 247
  • [3] The effect of loss function on conditional generative adversarial networks
    Abu-Srhan, Alaa
    Abushariah, Mohammad A. M.
    Al-Kadi, Omar S.
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (09) : 6977 - 6988
  • [4] A Unifying Generator Loss Function for Generative Adversarial Networks
    Veiner, Justin
    Alajaji, Fady
    Gharesifard, Bahman
    ENTROPY, 2024, 26 (04)
  • [5] Generative Adversarial Networks for Face Generation: A Survey
    Kammoun, Amina
    Slama, Rim
    Tabia, Hedi
    Ouni, Tarek
    Abid, Mohmed
    ACM COMPUTING SURVEYS, 2023, 55 (05)
  • [6] Generative Adversarial Networks for Classification
    Israel, Steven A.
    Goldstein, J. H.
    Klein, Jeffrey S.
    Talamonti, James
    Tanner, Franklin
    Zabel, Shane
    Sallee, Philip A.
    McCoy, Lisa
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [7] A Review: Generative Adversarial Networks
    Gonog, Liang
    Zhou, Yimin
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 505 - 510
  • [8] Evolutionary Generative Adversarial Networks
    Wang, Chaoyue
    Xu, Chang
    Yao, Xin
    Tao, Dacheng
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (06) : 921 - 934
  • [9] Face Aging Synthesis by Deep Cycle Generative Adversarial Networks and Bias Loss
    Liu, Tsung-Jung
    Wang, Chia-Ching
    IEEE ACCESS, 2024, 12 : 166439 - 166458
  • [10] Recent Progress on Generative Adversarial Networks (GANs): A Survey
    Pan, Zhaoqing
    Yu, Weijie
    Yi, Xiaokai
    Khan, Asifullah
    Yuan, Feng
    Zheng, Yuhui
    IEEE ACCESS, 2019, 7 : 36322 - 36333