A model-based reinforcement learning approach for maintenance optimization of degrading systems in a large state space

被引:26
|
作者
Zhang, Ping [1 ,2 ]
Zhu, Xiaoyan [1 ]
Xie, Min [2 ,3 ]
机构
[1] Univ Chinese Acad Sci, Sch Econ & Management, Bldg 7,80 Zhongguancun East Rd, Beijing, Peoples R China
[2] City Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Maintenance optimization; Periodic inspection; Model-based reinforcement learning; Degrading system; PREDICTIVE MAINTENANCE; DEGRADATION; RELIABILITY; POLICY; ANALYTICS; SUBJECT; PARTS;
D O I
10.1016/j.cie.2021.107622
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Scheduling maintenance tasks based on the deteriorating process has often been established on degradation models. However, the formulas of the degradation processes are usually unknown and hard to be determined for a system working in practices. In this study, we develop a model-based reinforcement learning approach for maintenance optimization. The developed approach determines maintenance actions for each degradation state at each inspection time over a finite planning horizon, supposing that the degradation formula is known or unknown. At each inspection time, the developed approach attempts to learn an optimal assessment value for each maintenance action to be performed at each degradation state. The assessment value quantifies the goodness of each state-action pair in terms of minimizing the accumulated maintenance costs over the planning horizon. To optimize the assessment values when a well-defined degradation formula is known, we customize a Q-learning method with model-based acceleration. When the degradation formula is unknown or hard to be determined, we develop a Dyna-Q method with maintenance-oriented improvements, in which an environment model capturing the degradation pattern under different maintenance actions is learned at first; Then, the assessment values are optimized while considering the stochastic behavior of the system degradation. The final maintenance policy is acquired by performing the maintenance actions associated with the highest assessment values. Experimental studies are presented to illustrate the applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Model-based reinforcement learning approach for federated learning resource allocation and parameter optimization
    Karami, Farzan
    Khalaj, Babak Hossein
    COMPUTER COMMUNICATIONS, 2024, 228
  • [2] Model-Based Reinforcement Learning for Quantized Federated Learning Performance Optimization
    Yang, Nuocheng
    Wang, Sihua
    Chen, Mingzhe
    Brinton, Christopher G.
    Yin, Changchuan
    Saad, Walid
    Cui, Shuguang
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 5063 - 5068
  • [3] Model-Based Reinforcement Learning Method for Microgrid Optimization Scheduling
    Yao, Jinke
    Xu, Jiachen
    Zhang, Ning
    Guan, Yajuan
    SUSTAINABILITY, 2023, 15 (12)
  • [4] Safe Model-Based Reinforcement Learning for Systems With Parametric Uncertainties
    Mahmud, S. M. Nahid
    Nivison, Scott A.
    Bell, Zachary I.
    Kamalapurkar, Rushikesh
    FRONTIERS IN ROBOTICS AND AI, 2021, 8
  • [5] A survey on model-based reinforcement learning
    Luo, Fan-Ming
    Xu, Tian
    Lai, Hang
    Chen, Xiong-Hui
    Zhang, Weinan
    Yu, Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (02)
  • [6] Model-Based Reinforcement Learning in Multiagent Systems with Sequential Action Selection
    Akramizadeh, Ali
    Afshar, Ahmad
    Menhaj, Mohammad Bagher
    Jafari, Samira
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (02): : 255 - 263
  • [7] Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach
    Liu, Yu
    Chen, Yiming
    Jiang, Tao
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 283 (01) : 166 - 181
  • [8] Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning
    Yang, Hongbing
    Li, Wenchao
    Wang, Bin
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 214
  • [9] A Configurable Model-Based Reinforcement Learning Framework for Disaggregated Storage Systems
    Jeong, Seunghwan
    Woo, Honguk
    IEEE ACCESS, 2023, 11 : 14876 - 14891
  • [10] A model-based reinforcement learning approach using on-line clustering
    Tziortziotis, Nikolaos
    Blekas, Konstantinos
    2012 IEEE 24TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2012), VOL 1, 2012, : 712 - 718