Metal nanoparticle-hydrogel nanocomposites for biomedical applications - An atmospheric pressure plasma synthesis approach

被引:40
作者
Nolan, Hugo [1 ]
Sun, Daye [1 ]
Falzon, Brian G. [1 ]
Chakrabarti, Supriya [2 ]
Padmanaba, Dilli Babu [2 ]
Maguire, Paul [2 ]
Mariotti, Davide [2 ]
Yu, Tao [3 ]
Jones, David [3 ]
Andrews, Gavin [3 ]
Sun, Dan [1 ]
机构
[1] Queens Univ Belfast, Sch Mech & Aerosp Engn, ACRG, Belfast BT9 5AH, Antrim, North Ireland
[2] Ulster Univ, Nanotechnol & Integrated BioEngn Ctr NIBEC, Shore Rd, Newtownabbey BT37 0PX, North Ireland
[3] Queens Univ Belfast, Sch Pharm, Lisburn Rd, Belfast BT9 7BL, Antrim, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
anti-bacterial composites; atmospheric pressure microplasma synthesis; biomedical materials; green synthesis; NP/hydrogel composites; GOLD-SILVER NANOPARTICLES; AG ALLOY NANOPARTICLES; AU-AG; POLY(VINYL ALCOHOL); DRUG-DELIVERY; MICROPLASMA; COMPOSITES; ABSORPTION; NANOSILVER; SURFACES;
D O I
10.1002/ppap.201800112
中图分类号
O59 [应用物理学];
学科分类号
摘要
The development of multifunctional nanocomposite materials is of great interest for various biomedical applications. A popular approach to produce tailored nanocomposites is to incorporate functional nanoparticles into hydrogels. Here, a benign atmospheric pressure microplasma synthesis approach has been deployed for the synthesis of metal and alloy NPs in-situ in a poly (vinyl alcohol) hydrogel. The formation of gold, silver, and gold-silver alloy NPs was confirmed via spectroscopic and microscopic characterization techniques. The properties of the hydrogel were not compromised during formation of the composites. Practical applications of the NP/PVA nanocomposites has been demonstrated by anti-bacterial testing. This establishes AMP processing as a viable one-step technique for the fabrication of NP/hydrogel composites, with potential multifunctionality for a range of biomedical applications.
引用
收藏
页数:10
相关论文
共 67 条
[1]   Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy [J].
Agnihotri, Shekhar ;
Mukherji, Soumyo ;
Mukherji, Suparna .
RSC ADVANCES, 2014, 4 (08) :3974-3983
[2]   Hydrogel: Preparation, characterization, and applications: A review [J].
Ahmed, Enas M. .
JOURNAL OF ADVANCED RESEARCH, 2015, 6 (02) :105-121
[3]  
Akbari B., 2011, IRANIAN J MAT SCI EN, V8, P48, DOI DOI 10.1007/978-3-030-39246-8_
[4]   Crystalline Si nanoparticles below crystallization threshold: Effects of collisional heating in non-thermal atmospheric-pressure microplasmas [J].
Askari, S. ;
Levchenko, I. ;
Ostrikov, K. ;
Maguire, P. ;
Mariotti, D. .
APPLIED PHYSICS LETTERS, 2014, 104 (16)
[5]   A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications [J].
Baker, Maribel I. ;
Walsh, Steven P. ;
Schwartz, Zvi ;
Boyan, Barbara D. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2012, 100B (05) :1451-1457
[6]   Inorganic Nanoparticles in Cancer Therapy [J].
Bhattacharyya, Sanjib ;
Kudgus, Rachel A. ;
Bhattacharya, Resham ;
Mukherjee, Priyabrata .
PHARMACEUTICAL RESEARCH, 2011, 28 (02) :237-259
[7]   Bioinspired Nanotheranostic Agents: Synthesis, Surface Functionalization, and Antioxidant Potential [J].
Bhaumik, Jayeeta ;
Thakur, Neeraj S. ;
Aili, Pavan K. ;
Ghanghoriya, Amit ;
Mittal, Amit K. ;
Banerjee, Uttam C. .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2015, 1 (06) :382-392
[8]   Silver percutaneous absorption after exposure to silver nanoparticles: A comparison study of three human skin graft samples used for clinical applications [J].
Bianco, C. ;
Adami, G. ;
Crosera, M. ;
Larese, F. ;
Casarin, S. ;
Castagnoli, C. ;
Stella, M. ;
Maina, G. .
BURNS, 2014, 40 (07) :1390-1396
[9]   The effects of hydrogen bonding upon the viscosity of aqueous poly(vinyl alcohol) solutions [J].
Briscoe, B ;
Luckham, P ;
Zhu, S .
POLYMER, 2000, 41 (10) :3851-3860
[10]   Biomedical applications of hydrogels: A review of patents and commercial products [J].
Calo, Enrica ;
Khutoryanskiy, Vitaliy V. .
EUROPEAN POLYMER JOURNAL, 2015, 65 :252-267