Auxiliary model based multi-innovation algorithms for multivariable nonlinear systems

被引:68
作者
Chen, Jing [1 ,2 ]
Zhang, Yan [3 ]
Ding, Ruifeng [1 ,4 ]
机构
[1] Jiangnan Univ, Sch Commun & Control Engn, Wuxi 214122, Peoples R China
[2] Wuxi Profess Coll Sci & Technol, Wuxi 214028, Peoples R China
[3] Wuxi Inst Technol, Wuxi 214121, Peoples R China
[4] Jiangnan Univ, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Parameter estimation; Stochastic gradient; Auxiliary model identification; Multi-innovation identification; Multi-input multi-output systems; SQUARES IDENTIFICATION METHODS; PARAMETER-ESTIMATION; PERFORMANCE ANALYSIS; OUTPUT ESTIMATION;
D O I
10.1016/j.mcm.2010.05.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper considers the identification problem for multi-input multi-output nonlinear systems. The difficulty of the parameter identification of such systems is that the information vector in the identification model contains unknown variables. The solution is using the auxiliary model identification idea to overcome the difficulty. An auxiliary model based multi-innovation extended stochastic gradient algorithm is presented by expanding the innovation vector to an innovation matrix. The proposed algorithm uses not only the current innovation but also the past innovations at each recursion and thus the parameter estimation accuracy can be improved. The numerical example shows that the proposed algorithm is effective. (C) 2010 Elsevier Ltd. All rights reserved
引用
收藏
页码:1428 / 1434
页数:7
相关论文
共 36 条
[11]   Several multi-innovation identification methods [J].
Ding, Feng .
DIGITAL SIGNAL PROCESSING, 2010, 20 (04) :1027-1039
[12]   Multiinnovation Least-Squares Identification for System Modeling [J].
Ding, Feng ;
Liu, Peter X. ;
Liu, Guangjun .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (03) :767-778
[13]   Gradient based and least-squares based iterative identification methods for OE and OEMA systems [J].
Ding, Feng ;
Liu, Peter X. ;
Liu, Guangjun .
DIGITAL SIGNAL PROCESSING, 2010, 20 (03) :664-677
[14]   Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises [J].
Ding, Feng ;
Liu, Peter X. ;
Liu, Guangjun .
SIGNAL PROCESSING, 2009, 89 (10) :1883-1890
[15]   A modified stochastic gradient based parameter estimation algorithm for dual-rate sampled-data systems [J].
Ding, Jie ;
Shi, Yang ;
Wang, Huigang ;
Ding, Feng .
DIGITAL SIGNAL PROCESSING, 2010, 20 (04) :1238-1247
[16]   Time series AR modeling with missing observations based on the polynomial transformation [J].
Ding, Jie ;
Han, Lili ;
Chen, Xiaoming .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (5-6) :527-536
[17]   Some further results on blind identification of MIMO FIR channels via second-order statistics [J].
Fang, Jun ;
Leyman, A. Rahim ;
Chew, Yong Huat ;
Duan, Huiping .
SIGNAL PROCESSING, 2007, 87 (06) :1434-1447
[18]   An approach for identification of uncertain Wiener systems [J].
Figueroa, J. L. ;
Biagiola, S. I. ;
Agamennoni, O. E. .
MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (1-2) :305-315
[19]  
Goodwin G. C., 1984, Adaptive filtering prediction and control
[20]   Hierarchical least-squares based iterative identification for multivariable systems with moving average noises [J].
Han, Heqiang ;
Xie, Li ;
Ding, Feng ;
Liu, Xinggao .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (9-10) :1213-1220