TFInfer: a tool for probabilistic inference of transcription factor activities

被引:23
|
作者
Asif, H. M. Shahzad [1 ]
Rolfe, Matthew D. [2 ]
Green, Jeff [2 ]
Lawrence, Neil D. [3 ]
Rattray, Magnus [3 ]
Sanguinetti, Guido [1 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
[2] Univ Sheffield, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England
[3] Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England
基金
英国生物技术与生命科学研究理事会;
关键词
COMPONENTS;
D O I
10.1093/bioinformatics/btq469
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
TFInfer is a novel open access, standalone tool for genome-wide inference of transcription factor activities from gene expression data. Based on an earlier MATLAB version, the software has now been extended in a number of ways. It has been significantly optimised in terms of performance, and it was given novel functionality, by allowing the user to model both time series and data from multiple independent conditions. With a full documentation and intuitive graphical user interface, together with an in-built data base of yeast and Escherichia coli transcription factors, the software does not require any mathematical or computational expertise to be used effectively.
引用
收藏
页码:2635 / 2636
页数:2
相关论文
共 50 条
  • [1] Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities
    Sanguinetti, Guido
    Lawrence, Neil D.
    Rattray, Magnus
    BIOINFORMATICS, 2006, 22 (22) : 2775 - 2781
  • [2] Probabilistic Inference of Transcription Factor Binding from Multiple Data Sources
    Lahdesmaki, Harri
    Rust, Alistair G.
    Shmulevich, Ilya
    PLOS ONE, 2008, 3 (03):
  • [3] A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription
    Sanguinetti, Guido
    Rattray, Magnus
    Lawrence, Neil D.
    BIOINFORMATICS, 2006, 22 (14) : 1753 - 1759
  • [4] Probabilistic Inference on Multiple Normalized Signal Profiles from Next Generation Sequencing: Transcription Factor Binding Sites
    Wong, Ka-Chun
    Peng, Chengbin
    Li, Yue
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (06) : 1416 - 1428
  • [5] Probabilistic framework for transcription factor binding prediction
    Laehdesmaeki, Harri
    Shmulevich, Ilya
    2007 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS, 2007, : 95 - 98
  • [6] Transcription Factor Activity Inference in Systemic Lupus Erythematosus
    Lopez-Dominguez, Raul
    Toro-Dominguez, Daniel
    Martorell-Marugan, Jordi
    Garcia-Moreno, Adrian
    Holland, Christian H.
    Saez-Rodriguez, Julio
    Goldman, Daniel
    Petri, Michelle A.
    Alarcon-Riquelme, Marta E.
    Carmona-Saez, Pedro
    LIFE-BASEL, 2021, 11 (04):
  • [7] Reconstructing transcription factor activities in hierarchical transcription network motifs
    Ocone, Andrea
    Sanguinetti, Guido
    BIOINFORMATICS, 2011, 27 (20) : 2873 - 2879
  • [8] Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity
    Weirauch, Matthew T.
    Yang, Ally
    Albu, Mihai
    Cote, Atina G.
    Montenegro-Montero, Alejandro
    Drewe, Philipp
    Najafabadi, Hamed S.
    Lambert, Samuel A.
    Mann, Ishminder
    Cook, Kate
    Zheng, Hong
    Goity, Alejandra
    van Bakel, Harm
    Lozano, Jean-Claude
    Galli, Mary
    Lewsey, Mathew G.
    Huang, Eryong
    Mukherjee, Tuhin
    Chen, Xiaoting
    Reece-Hoyes, John S.
    Govindarajan, Sridhar
    Shaulsky, Gad
    Walhout, Albertha J. M.
    Bouget, Francois-Yves
    Ratsch, Gunnar
    Larrondo, Luis F.
    Ecker, Joseph R.
    Hughes, Timothy R.
    CELL, 2014, 158 (06) : 1431 - 1443
  • [9] Probabilistic Latent Factor Model for Collaborative Filtering with Bayesian Inference
    Fang, Jiansheng
    Zhang, Xiaoqing
    Hu, Yan
    Xu, Yanwu
    Yang, Ming
    Liu, Jiang
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 73 - 80
  • [10] Transcription Factor Information System (TFIS): A Tool for Detection of Transcription Factor Binding Sites
    Narad, Priyanka
    Kumar, Abhishek
    Chakraborty, Amlan
    Patni, Pranav
    Sengupta, Abhishek
    Wadhwa, Gulshan
    Upadhyaya, K. C.
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2017, 9 (03) : 378 - 391