The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions

被引:9
作者
Logunov, A. [1 ,2 ]
Malinnikova, E. [3 ,4 ]
Nadirashvili, N. [5 ]
Nazarov, F. [6 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Geneva, Sect Math, Geneva, Switzerland
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[4] NTNU, Dept Math Sci, Trondheim, Norway
[5] CNRS, Inst Math Marseille, Marseille, France
[6] Kent State Univ, Dept Math, Kent, OH 44242 USA
关键词
Laplace eigenfunction; Nodal set; Lipschitz domain; UNIQUE CONTINUATION; DOMAINS;
D O I
10.1007/s00039-021-00581-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a bounded domain in R-n with C-1 boundary and let u(lambda) be a Dirichlet Laplace eigenfunction in Omega with eigenvalue lambda. We show that the (n - 1)-dimensional Hausdorff measure of the zero set of u(lambda) does not exceed C(Omega)root lambda. This result is new even for the case of domains with C-infinity-smooth boundary.
引用
收藏
页码:1219 / 1244
页数:26
相关论文
共 23 条
  • [1] Adolfsson V, 1997, COMMUN PUR APPL MATH, V50, P935, DOI 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO
  • [2] 2-H
  • [3] Adolfsson V, 1995, REV MAT IBEROAM, V11, P513
  • [4] Agmon S, 1966, SEMINAIRE MATH SUPER
  • [5] The stability for the Cauchy problem for elliptic equations
    Alessandrini, Giovanni
    Rondi, Luca
    Rosset, Edi
    Vessella, Sergio
    [J]. INVERSE PROBLEMS, 2009, 25 (12)
  • [6] Almgren F. J., 1979, Dirichlet's problem for multiple valued functions and the regularity of mass minimizing integral currents, P1
  • [7] NODAL SETS OF EIGENFUNCTIONS ON RIEMANNIAN-MANIFOLDS
    DONNELLY, H
    FEFFERMAN, C
    [J]. INVENTIONES MATHEMATICAE, 1988, 93 (01) : 161 - 183
  • [8] DONNELLY HAROLD, 1990, Nodal sets of eigenfunctions: Riemannian manifolds with boundary, Analysis, et cetera, P251
  • [9] Han Q, 2007, PURE APPL MATH Q, V3, P647
  • [10] LOGARITHMIC CONVEXITY FOR SUPREMUM NORMS OF HARMONIC-FUNCTIONS
    KOREVAAR, J
    MEYERS, JLH
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 : 353 - 362