Lyapunov exponents versus expansivity and sensitivity in cellular automata

被引:19
|
作者
Finelli, M
Manzini, G
Margara, L
机构
[1] Univ Siena, Dipartimento Matemat, I-53100 Siena, Italy
[2] Dipartimento Sci & Tecnol Avanzate, I-15100 Alessandria, Italy
[3] CNR, Ist Matemat Computaz, I-56126 Pisa, Italy
[4] Univ Bologna, Dipartimento Sci Informaz, I-40127 Bologna, Italy
关键词
D O I
10.1006/jcom.1998.0474
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We establish a connection between the theory of Lyapunov exponents and the properties of expansivity and sensitivity to initial conditions for a particular class of discrete time dynamical systems; cellular automats (CA). The main contribution of this paper is the proof that all expansive cellular automats have positive Lyapunov exponents for almost all the phase space configurations. In addition, we provide an elementary proof of the non-existence of expansive CA in any dimension greater than 1. In the second part of this paper we prove that expansivity in dimension greater than 1 can be recovered by restricting the phase space to a suitable subset of the whole space. To this extent we describe a 2-dimensional CA which is expansive over a dense uncountable subset of the whole phase space. Finally, we highlight the different behavior of expansive and sensitive CA for what concerns the speed at which perturbations propagate. (C) 1998 Academic Press.
引用
收藏
页码:210 / 233
页数:24
相关论文
共 50 条
  • [1] Cellular automata and Lyapunov exponents
    Tisseur, P
    NONLINEARITY, 2000, 13 (05) : 1547 - 1560
  • [2] On Lyapunov Exponents for Cellular Automata
    Courbage, Maurice
    Kaminski, Brunon
    JOURNAL OF CELLULAR AUTOMATA, 2009, 4 (02) : 159 - 168
  • [3] Lyapunov exponents and synchronization of cellular automata
    Bagnoli, F
    Rechtman, R
    COMPLEX SYSTEMS-BOOK, 2001, 6 : 69 - 103
  • [4] Synchronization and maximum Lyapunov exponents of cellular automata
    Bagnoli, Franco
    Rechtman, Raul
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (2-A):
  • [5] Synchronization and maximum Lyapunov exponents of cellular automata
    Bagnoli, Franco
    Rechtman, Raul
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (2 PART A):
  • [6] The Lyapunov Exponents of Reversible Cellular Automata Are Uncomputable
    Kopra, Johan
    UNCONVENTIONAL COMPUTATION AND NATURAL COMPUTATION, UCNC 2019, 2019, 11493 : 178 - 190
  • [7] DAMAGE SPREADING AND LYAPUNOV EXPONENTS IN CELLULAR AUTOMATA
    BAGNOLI, F
    RECHTMAN, R
    RUFFO, S
    PHYSICS LETTERS A, 1992, 172 (1-2) : 34 - 38
  • [8] Synchronization and maximum Lyapunov exponents of cellular automata
    Bagnoli, F
    Rechtman, R
    PHYSICAL REVIEW E, 1999, 59 (02): : R1307 - R1310
  • [9] On computing the Lyapunov exponents of reversible cellular automata
    Johan Kopra
    Natural Computing, 2021, 20 : 273 - 286
  • [10] On computing the Lyapunov exponents of reversible cellular automata
    Kopra, Johan
    NATURAL COMPUTING, 2021, 20 (02) : 273 - 286